

Master of Science (Biotechnology)

Programme Code: MSB

Duration – 2 Years Full Time

Programme Structure And Curriculum & Scheme of Examination With Choice Based Credit System (CBCS) 2021-23 Batch

AMITY UNIVERSITY RAJASTHAN

PREAMBLE

Amity University aims to achieve academic excellence by providing multi-faceted education to students and encourage them to reach the pinnacle of success. The University has designed a system that would provide rigorous academic programme with necessary skills to enable them to excel in their careers.

This booklet contains the Programme Structure, the Detailed Curriculum and the Scheme of Examination. The Programme Structure includes the courses (Core and Elective), arranged semester wise. The importance of each course is defined in terms of credits attached to it. The credit units attached to each course has been further defined in terms of contact hours i.e. Lecture Hours (L), Tutorial Hours (T), Practical Hours (P). Towards earning credits in terms of contact hours, 1 Lecture and 1 Tutorial per week are rated as 1 credit each and 2 Practical hours per week are rated as 1 credit. Thus, for example, an L-T-P structure of 3-0-0 will have 3 credits, 3-1-0 will have 4 credits, and 3-1-2 will have 5 credits.

The Curriculum and Scheme of Examination of each course includes the course objectives, course contents, scheme of examination and the list of text and references. The scheme of examination defines the various components of evaluation and the weightage attached to each component. The different codes used for the components of evaluation and the weightage attached to them are:

<u>Components</u>	Codes	Weightage (%)
Case Discussion/ Presentation/ Analysis	С	05 - 10
Home Assignment	Н	05 - 10
Project	Р	05 - 10
Seminar	S	05 - 10
Viva	V	05 - 10
Quiz	Q	05 - 10
Class Test	CT	10 - 15
Attendance	А	05
End Semester Examination	EE	70

It is hoped that it will help the students study in a planned and a structured manner and promote effective learning. Wishing you an intellectually stimulating stay at Amity University.

May, 2020

PROGRAMME OVERVIEW

Biotechnology in the present scenario is helping by showing advancement in diagnosis of a disease by helping us to move forward from primitive Symptomatic Treatment to modern Molecular Treatment along with rapid organization and analysis of biological data possible (Bioinformatics), Marine and aquatic applications of Biotechnology used to improve cleanup of toxic spills, improve yields of fisheries (Blue Biotechnology), Agricultural use of Biotechnology, heading towards the production of crops in not only good quantity but also with good quality (Green Biotechnology), Medicine including designing of organisms to produce antibiotics and the engineering of genetic cures through genomic manipulation (Red Biotechnology), Exemplified by the designing of an organism to produce useful chemicals, use of enzymes as industrial catalysts (White Biotechnology).

In view of above Amity University Rajasthan running Bachelors, Master and Ph.D biotechnology programs to fulfill the demand of various biopharmaceutical and biotechnological industries. All these programs course curriculum and structure have been designed in consultation with various pharmaceutical, biotechnological and dairy industry experts to meet the demand and supply of technical qualified personals. The course curriculum covering the major part of advanced biotechnological process, bioprocess and downstream technology, enzyme technology, separation technology, immunology, virology, genetics, molecular modeling drug design, biopharmaceuticals, pharmaceutical biotechnology, and bioinformatics in relation to the industry requirements.

The MSc. programme in Biotechnology seeks to provide education and training, empower students with technical skill-set, create capacities and build career opportunities in four key domains of biotechnology namely:

- Research and Development (Academic & Research Institutions and Industrial Sectors)
- Biotechnology Industries, Breweries, Pharmaceutical & Food Industries
- Forensic, Diagnostics Centers and Regulatory agencies
- Data handlings, Coding and Clinical research

This is achieved through a combination of interdisciplinary curricula as well as intensive laboratory work. Through its unique pedagogical methods, the academic programme allows transferability of acquired skills in domains unrelated to biotech sectors. Students are expected to have both specialized knowledge and practical experience for addressing contemporary problems in both academic and industrial setting.

Program Learning Outcomes (PLO):

The objective of the programme is to highlight the role played by biotechnology in modern society and its relevance to sustainable development. It seeks to provide the following:

PLO-I	:	Apply the theoretical and empirical methods of Biotechnology to questions at the frontier of knowledge for a successful career in Biotechnology and allied industries.						
PLO-II	:	Explain, debate and demonstrate to lay audiences the application of Biotechnology to solve the problems of society.						
PLO-III	:	Build teams that work collaboratively and make progress efficiently towards solutions for real world projects.						
PLO-IV	:	Evaluate and explain the potential impacts, including risks of large scale engineering projects from Biotechnology and thereby produce recommendations for sustainable development.						

	M. Sc. Biotechnology									
Semester	СС	DE	VA	OE	Total					
1	19	3	4	-	26					
2	20	3	4	3	30					
3	20	3	4	3	30					
4	30	-	-	-	30					
Total	89	09	12	06	116					

Credit Summary Sheet

Note:- CC - Core Course, VA - Value Added Course, OE - Open Elective, DE - Domain Elective

	List of Open Electives from M.Sc Biotechnology											
From M.Sc	From M.Sc Biotech											
Course Code	Course Title	Category	Lectures (L) Hours Per Week	Tutorial (T) Hours Per Week	Practical (P) Hours Per Week	Credits						
MSB230	Environment Biotechnology	CC	3	-	-	3						
MSB331	Tissue Engineering	CC	3	-	-	3						

Program Learning Outcomes

At the end of the program students will be able to:

PLO1: Apply the theoretical and empirical methods of Biotechnology to questions at the frontier of knowledge for a successful career in Biotechnology and allied industries.

PLO2: Explain, debate and demonstrate to lay audiences the application of Biotechnology to solve the problems of society.

PLO3: Build teams that work collaboratively and make progress efficiently towards solutions for real world projects.

PLO4: Evaluate and explain the potential impacts, including risks of large scale engineering projects from Biotechnology and thereby produce recommendations for sustainable development.

	M. Sc. Biotechn	ology: I	Semeste	r		
Course Code	Course Title	Category	Lectur es (L) Hours Per Week	Tutori al (T) Hours Per Week	Practical (P) Hours Per Week	Credits
MSB101	Biochemistry & Metabolic Regulation	CC	3	-	-	3
MSB102	Advanced Microbiology	CC	<mark>3</mark>	1	_	<mark>4</mark>
MSB103	Bioinformatics	CC	3	-	-	3
MSB104	Cell & Molecular Biology	CC	3	-	-	3
MSB121	Biochemistry & Metabolic Regulation Lab	CC	-	-	2	1
MSB122	Advanced Microbiology Lab	CC	-	-	2	<mark>1</mark>
MSB123	Bioinformatics Lab	CC	-	-	2	1
MSB124	Cell & Molecular Biology Lab	CC	-	-	2	1
AND001	ANANDAM-I	CC	-	-	-	2
	DE Electives: Student has to sele	ect 1 course fr	om the list	of follow	ing DE electiv	ves
MSB130	Instrumentation in Biotechnology	DE	3	-	-	3
MSB131	Biosafety, Bioethics & IPR	DE				
MSB132	Industrial Safety & Hazards	DE				
BCS111	Communicational Skills – I	VA	1	-	-	1
BSS111	Behavioural Science I (Self Development and Interpersonal Skills)	VA	1	-	-	1
Foreign Language – IFLT111FrenchFLG111GermanFLS111SpanishFLC111Chinese		VA	2	-	-	2
NCVA	-	NCVA	-	-	-	-
	TOTAL					26

Note: Common details for ANANDAM course given at the end of syllabus.

	M. Sc. Bio	technology: II S	Semester			
Course Code	Course Title	Category	Lectures (L) Hours Per Week	Tutorial (T) Hours Per Week	Practical (P) Hours Per Week	Credits
MSB201	Advanced Plant Biotechnology	CC	3	-	-	3
MSB202	Advanced Animal Biotechnology	CC	3	-	-	3
MSB203	Advanced Structural Biology	CC	3	-	-	3
MSB204	Advance Biostatistics and Scientific Writing	CC	3	<mark>-</mark>	-	3
MSB205	Medical Biotechnology	CC C	<mark>3</mark>	_	-	<mark>3</mark>
MSB221	Advanced Plant Biotechnology Lab	CC	-	-	2	1
MSB222	Advanced Animal Biotechnology Lab	CC	-	-	2	1
MSB223	Advanced Structural Biology Lab	CC	-	-	2	1
AND002	ANANDAM-II	VA	-	-	-	2
	DE Electives: Student has to select	1 course from	the list of follow	wing DE elec	tives	
MSB230	Environment Biotechnology	DE	3	-	-	3
MSB231	Entrepreneurship development in Biotechnology	DE				
MSB232	Pharmaceutical Technology & Biotechnology	DE				
OE	Open Elective II	OE	3	-	-	3
BCS211	Communicational Skills – II	VA	1	-	-	1
BSS211			1	-	-	1
FLT211 FLG211 FLS211 FLC211	Foreign Language – II French German Spanish Chinese	VA	2	-	-	2
	TOTAL	İ				30

	M. Sc. Biote	chnology	: III Semest	ter		
Course Code	Course Title	Category	Lectures (L) Hours Per Week	Tutorial (T) Hours Per Week	Practical (P) Hours Per Week	Credits
MSB301	Bioprocess and Industrial Biotechnology	CC	3	-	-	3
MSB302	Molecular Genetics and Developmental Biology	CC	3	-	-	3
MSB303	Enzyme Technology & Immunology	CC	3	-	-	3
MSB304	Recombinant DNA Technology	CC	3	-	-	3
MSB305	Genomics & Proteomics	CC	2	-	-	2
MSB321	Bioprocess and Industrial Biotechnology Lab	CC	-	-	2	1
MSB323	Enzyme Technology & Immunology Lab	CC	-	-	2	1
MSB324	Recombinant DNA Technology Lab	CC	-	-	2	1
MSB325	Genomics & Proteomics Lab	CC	-	-	2	1
AND003	ANANDAM-III	VA	-	-	-	2
	DE Electives: Student has to select	1 course from	the list of follo	wing DE elec	tives	
MSB330	Advanced Food Technology	DE	3	-	-	3
MSB331	Tissue Engineering	DE				
MSB332	Drug Discovery & Development	DE				
OE	Open Elective III	OE	3	-	-	3
BCS311	Communicational Skills - III	VA	1	-	-	1
BSS311	Behavioral Science III (Leading Through Teams)	VA	1	-	-	1
FLT311 FLG311 FLS311 FLC311	Foreign Language - III French German Spanish Chinese	VA	2	-	-	2
	TOTAL					30

	M. Sc. Biotechnology: IV Semester									
Course Code	Course Title	Category	Lectures (L) Hours Per Week	Tutori al (T) Hours Per Week	Practical (P) Hours Per Week	Credits				
MSB460	Major Project /Dissertation	CC	-	-	-	30				
	TOTAL				-	30				

Credit Unit:03

BIOCHEMISTRY AND METABOLIC REGULATION

Course Code: MSB101

Theory

Course Objective:

The objectives of the Metabolic Biochemistry course are to provide a comprehensive understanding of human metabolism in areas of enzymology and protein structure and function; energy releasing and energy consuming metabolic processes; the regulation of synthesis and breakdown of sugars, lipids, nucleic acids, and amino acids which is necessary for further work in the biochemical/biomedical and biotechnology areas.

Course Contents:

Module I

Structure of Biomolecules, Metabolism of Carbohydrates, Lipids, Proteins, Amino acids and Nucleic acids.

Module II

Photosynthesis in Microorganisms; Role of chlorophylls, carotenoids and phycobilins; Calvin cycle; Chemolithotrophy; hydrogen- iron-nitrite-oxidizing bacteria; nitrate and sulfate reduction; methanogenesis and acetogenesis; Bacterial fermentations.

Module III: Modes of Regulation

Different levels of regulation - protein synthesis/degradation, allosteric regulation, reversible covalent modification, proteolytic processing, Requirements for ATP in synthesis and degradation cycle, Reversibility of the different methods of regulation, Consequences of misregulation

Module IV: Regulation of metabolic pathways

Glycolysis/glycogenolysis, Phosphogluconate/Citric Acid Cycle, Oxidative Phosphorylation, Fatty acid oxidation, Fatty Acid Biosynthesis, Amino Acid Oxidation. **Module V:**

Regulation of Metabolism for the production of Primary and Secondary Metabolites with case studies.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Lehninger, A. (2013). Principles of Biochemistry, 6th Ed., Nelson and Cox.
- Mathews, Van Holde & (2012). Ahern Biochemistry. 4th Edition.

- Smith, E. L., Hill, R. L. Lehman, I. R. Lefkowitz, R. J. Handler, P. & White, A. (1983). Biochemistry 7th Ed. McGraw-Hill Book Company.
- Berg, J. M., Tymoczco, J. L. & Stryer, L. (1990). Biochemistry, 3rd Ed., W.H. Freeman and Company.
- Voet, D. V. & Voet, J. G. (2010). Biochemistry, 4th Ed. Wiley
- Conn, E. E. & Stumph, P. K. (1987). Outlines of Biochemistry, John Wiley & Sons.

ADVANCED MICROBIOLOGY

Course Code: MSB102

Theory

Credit Unit:3L+1T

Course Objective:

An introduction to microorganisms, their morphology, reproduction, cultivation, metabolism, genetics, ecology of microorganisms and their relationships to health and environment

Course Contents:

Module I

Introduction (bacteria, fungi, algae, protozoa and viruses), Contribution of Scientists, Koch's Postulates, methods in Microbiology -Principles of microbial nutrition, Culture media, Theory and practice of sterilization, pure culture techniques, Enrichment culture techniques and Microbial lab techniques.

Module II

Prokaryotic structure and function - Microbial nutrition and growth - Arithmatic and Geomatric Growth expression, mathematical expression of growth, growth curve, measurement of growth and growth yields, synchronous growth, continuous culture, Diauxic growth, culture collection and maintenance of cultures.

Module III

Microbial evolution, systematics and taxonomy - new approaches to bacterial taxonomy, classification including ribotyping, characteristics of primary domains, taxonomy, nomenclature and Bergey's manual, ribosomal RNA sequencing, microbial regulation of gene expression (attenuation and negative regulation with e.g. *trp* and *lac* operon), transfer of genetic material: plasmids, transposons, transduction, transformation and conjugation.

Module IV

Host-parasite relationship -Normal micro flora of skin, oral cavity, gastrointestinal tract; entry of pathogens into the host, types of toxins (Exo, endo, entro) and their mode of actions, Plant -Microbe Interactions, Microbial pathogenesis -Disease reservoirs; Epidemiological terminologies; Infectious disease transmission

Module V

Chemotherapy/antibiotics -Antimicrobial agents, sulfa drugs, antibiotics -penicillin and cephalosporins, broad spectrum antibiotics, antibiotics from prokaryotes. antifungal antibiotics; mode of action, resistance to antibiotics

Examination Scheme:

Components	Mid	Attendanc	Assignment/	Class	Viva	EE
	Term	e	Project/Seminar/Quiz	Test		
Weightage	15	5	10	10	10	50
<mark>(%)</mark>						

Text & References:

Text:

- Pelczar, M.J., Chan, E.C.S. & Kreig, N.R. (2001). Microbiology 6th Ed. Tata McGraw Hill.
- Prescott, L.M. (2014). Microbiology, 9th Ed. McGraw by Hill Higher Education.

- Stanier, R.Y., Ingraham, J.L., Wheelis M.L. & Painter, P.R. (2005). General Microbiology, 5th Ed. McMillan,
- Atlas, R.M. (1997). Principles of Microbiology 2nd Ed. WMT Brown Publishers.
- VanDemark, P.J. & Batzing, B.L. Menlo Park (1987). The microbes: an introduction to their nature and importance, Benjamin/Cummings Publishing Co.
- Tortora, G. J., Funke, B. R. and Case, C.L. (1994). Microbiology 5th Ed. Benzamin Cummings Inc. California.

BIOINFORMATICS

Course Code: MSB103

Credit Unit:03

Theory

Course Objective:

course **Bioinformatics**. The depicts the fundamental concepts and methods in а field at the junction of Biology and Computing. The course covers the principles and methods used to search and compare DNA, RNA and proteins, cast as biological "sequences". It also includes three dimensional data of protein structure and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. It serves a gateway course for all science students.

Course Contents:

Module I: Basics of Bioinformatics

Introduction to Bioinformatics; Computers in Biology to understand Biological System; Basic commands of Windows, Unix and Linux operating systems; Concept of open resources in Bioinformatics.

Module II

Biological databases -

Database concepts; Introduction to Data types and source; Protein Sequence and Structural Databases; Nucleic acid databases; Genome databases; Specialized Databases; Protein databases- UniProt, Protein Data Bank. Clinically relevant drug-drug interactions databases; Information retrieval from Biological databases: Entrez system, TCGA data bases, Bioportal.

Module III

Sequence Analysis

Biological background for sequence analysis; Sequence alignment: Global, Local, Pairwise and Multiple sequence analysis; Algorithm for alignments; Database Searching; Tools for Sequence alignment.

Module IV

Introduction to Modeling and Visualization tools Introduction to RASMOL, PyMoL SWISS-PDB Viewer.

Module V

Insilico Structure prediction of protein and docking

Protein identification, physical properties, motifs and patterns, structure, folding classes, structure classification; Structure databases– PDB and MMDB, visualizing structural information, Docking of Molecules, structure prediction in proteins, prediction of buried residues in proteins, RNA secondary structure – minimum freeenergy structures.

Examination Scheme:

Components	Mid	Attendanc	Assignment/	Class	Viva	EE
	Term	e	Project/Seminar/Quiz	Test		
Weightage	15	5	10	10	10	50
(%)						

Text & References:

Text:

- Sensen, C.W. (2002). Essentials of Genomics and Bioinformatics, John Wiley and Sons.
- Mount, D.W. (2004). Bioinformatics: Sequence and Genome Analysis. 2nd Ed., Cold Spring Harbor Laboratory Press.
- Baxevanis, A.D. and Ouellette, B.F.F (2009). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Wiley Interscience

- Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press
- Heijne, G. Von and Heijne, G. Von (1987). Sequence Analysis in Molecular Biology: Treasure Trove or Trivial Pursuit by Academic Press.
- Pevzner, P.A. (2000). Computational Molecular Biology: An Algorithmic Approach by MIT Press
- Doolittle, R.F., Abelson, J.N, & Simon, M.I. (1996). Computer Methods for Macromolecular Sequence Analysis, Academic press
- Waterman, M. (1995). Introduction to Computational Biology: Maps, Sequences and Genomes, 1st Ed, Chapman and Hall.

CELL AND MOLECULAR BIOLOGY

Course Code: MSB104

Credit Unit:03

Theory Course Objective:

The object of the present course is to develop basic knowledge and skills in cell and molecular biology and to understand the structure and function of the cellular and sub cellular components of cells and tissues with the help of recent techniques. This course will help students to get an understanding of cell function at the molecular level including the fundamentals of DNA They will become aware of the complexity and harmony of the cell. Applications of cellular and molecular biology in Biotechnology will also be presented.

Course Contents:

Module I

Protein targeting - Chemical and physical properties of cell membranes and their major components, significance of these properties to membrane structure, integral and peripheral membrane proteins, biosynthesis of membrane and secreted proteins; targeting of proteins to membranes.

Module II

Membrane transport/Cell Cycle - Mechanisms for transport of small molecules across the membrane, including simple diffusion, facilitative diffusion, primary and secondary active transport, action of ionophores. Cell cycle and the events associated with each stage, control of the cell cycle and the proteins involved; know the role of the cyclins and cyclin-dependent kinases, cell cycle checkpoints, methods for synchronizing the cell cycle in cell populations.

Module III

Intracellular Signaling I - define growth, growth factor, growth factor receptor, mitogen, receptor, effector, second messenger, action of hormones and other biologically active agents that act via receptors in the nucleus and/or cytoplasm. Intracellular Signaling II - the intracellular signaling cascades triggered by hormone binding to these receptor, G proteins signalling, the action of Ca 2+ and diacylglycerol as second messengers.

Module IV: Replication

Replication of DNA, Role of DNA polymerases & proteins involved in DNA replication, Compare and contrast eukaryote and prokaryote DNA replication, telomeres, telomerase and altered telomerase function in aging and disease.

Recombination & Repair: Mutations and types of site mutations: substitution, transition, transversion, insertion, deletion, tautomer, frameshift and nonsense mutation. Repair mechanisms: dimer repair, excision repair, mismatch repair, trans-lesion repair, and recombinational repair.

Module V

Transcription - RNA transcription and the proteins required for each step, maturation of the RNA transcript derived from a eukaryotic gene, structure of prokaryote and eukaryote promoter and the function of promoter sequences, inhibitors of prokaryote and eukaryote transcription and their mechanisms of action. Concept of operon, inducer, operator and polycistronic transcript, expression of the lac operon and trp operon in *E. coli*, catabolite repression, leader peptide and attenuator site, enhancer and transcription factors, four common DNA-binding motifs found in transcription factors, mRNA stability and alternative splicing in gene expression

Translation-Genetic code and the concept of colinearity of the gene and protein, components required for translation, basic steps involved in initiation, elongation, and termination of protein translation, inhibitors of protein translation. Compare and contrast the spatial and temporal differences in prokaryotic and eukaryotic transcription and translation

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Albert, B. (2002). Molecular Biology of the Cell 4th Ed., Garland Science New York.
- Darnell, L. and Baltimore (2012). Molecular Biology, Mac Millan
- Watson et al., (2013). Molecular Biology of the gene, 7th Ed., Pearson.

- Lewis, B. (2003). Genes VIII, Benjamin Cummings.
- Goodenough, U. W. (1984). Genetics 2nd Ed. Saunders (W.B.) Co Ltd.
- Swanson, C. P., Merz, T. & Young, W.J. (1981). Cytogenetics, Prentice Hall
- Berg, J. M., Tymoczco, J. L. & Stryer, L. (2002). Biochemistry, 3rd Ed. W.H. Freeman and Company, ,
- Brown, T.A. (1990). Genomes 2nd Ed. Oxford: Wiley-Liss,

BIOCHEMISTRY AND METABOLIC REGULATION -Lab MSB121 Credit Unit:01

Course Code: MSB121

Course Contents:

Module I: Proteins

Identification of protein by Biuret test, quantitation of protein by Bradford method, Separation of proteins by SDS-PAGE, Enzyme: Determination of serum alkaline phosphatase activity

Module II: Nucleic Acid

Biochemical estimation of DNA, RNA. Separation of DNAsamples on Agarose gel. **Carbohydrate:** Color reactions of different type of carbohydrates, Biochemical estimation of blood sugar **Lipids:** Blood Cholesterol estimation.

Examination Scheme:

	IA				EE			
Practical (Mid Term)Viva PerformanceRegular Performance				Practical (End Term)	Practical Record	Viva		
20	15	10	05	25	10	15		

ADVANCED MICROBIOLOGY - Lab

Course Code: MSB122

Course Contents:

Credit Unit:01

Module I

Preparation of culture media for cultivation of specific microorganism. Isolation of microbes from air, soil and water samples, their identification by staining techniques – simple staining, differential Gram staining, lacto phenol cotton blue staining for fungi

Module II

Biochemical test – Indole test, methyl red test, voges proskaeur test, citrate utilization, starch hydrolysis, protease, catalase test and oxidase test. Identification of microbes in water samples; standard plate count, presumptive and confirmed coli form test, BOD and COD

Examination Scheme:

		IA	EE			
Practical Viva Regular Attendance				Practical	Practical	Viva
(Mid Term)		Performance		(End Term)	Record	
20	15	10	05	25	10	15

BIOINFORMATICS -Lab

Course Code: MSB123

Course Objective:

Credit Unit:01

To demonstrate the techniques and soft wares used for sequence analysis, alignment, structure prediction of the proteins and other compounds and finding the phylogenetic relationships

Course Contents:

Module I

Basics of sequence analysis Retrieving a sequence-nucleic acid/Protein

Module II

Local and Global Alignment- concepts Pair wise sequence alignment, multiple sequence alignment Dynamic Programming – Smith Watermann Algorithm Needleman Wunsch Algorithm

Module III

Motif and pattern searching, Structure prediction, Protein structure classification resources, Structure superposition tools, Energy minimization and simulated annealing

Module IV

Phylogenetic prediction and analysis

Module V

Docking small molecules/peptides in active site of protein. Use of automated docking procedures. Free energy calculation.

Module VI

Finding transcription regulatory signals

Examination Scheme:

		IA	E	E		
Practical (Mid Term)			Attendance	Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

CELL AND MOLECULAR BIOLOGY -Lab

Course Code: MSB124

Course Objective:

Credit Unit:01

The laboratory experiments in Recombinant DNA Technology would certainly help to comprehend the theoretical aspects of the subject.

Course Contents:

- 1. Isolation of genomic DNA from prokaryotic and Eukaryotes
- 2. Isolation of plasmid.
- 3. Study of apoptosis by TUNEL method
- 4. Isolation of cell organelles by ultracentrifugation.
- 5. Study of in vitro transcription.
- 6. Study of DNA repair mechanism
- 7. Site-directed mutagenesis

Examination Scheme:

		IA	EE			
PracticalVivaRegularAttenda(Mid Term)Performance		Attendance	PracticalPracticalVi(End Term)Record			
20	15	10	05	25	10	15

INSTRUMENTATION IN BIOTECHNOLOGY

Course Code: MSB130

Theory

Credit Unit:03

Course Objective:

To demonstrate a thorough knowledge of the equipment and operating modes of instrumentation systems used in the area of biotechnology and critically discuss the limitations and biohazards of the equipment and techniques employed in biotechnology.

Course Contents:

Module I: Ultracentrifugation

Sedimentation equilibrium and sedimentation velocity methods, Analytical and Preparative centrifuges, application of density gradient and differential centrifugation.

Module II: Gel electrophoresis

Agarose and Polyacrylamide, Two-dimensional electrophoresis, Isoelectric focussing, Capillary electrophoresis, Pulse-field gel electrophoresis, Immunoelectrophoresis.

Module III

TLC gas chromatography, gel filtration, ion-exchange chromatography, affinity chromatography and HPLC, FPLC.

Module IV

UV and visible Spectroscopy, Spectrofluorimetry, Atomic absorption spectrophotometry, Mass Spectrometry, Infrared Spectroscopy, MALDITOF, Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy, Magnetic Resonance Imaging. X -Ray diffraction.

Module V

Optical and Electron Microscopy, Transmission and Scanning Electron Microscopy, Tunneling Electron Microscopy, Polarization and Fluorescence microscopy.

Radio tracers, GM Counter, Proportional and Scintillation Counters, Autoradiography, Radio-immunoassay.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/	Class	Viva	EE
			Project/Seminar/Quiz	Test		
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Wilson, K. & Walker, J. (2000). Practical Biochemistry, Principles & Techniques 5th Ed. Cambridge University Press.
- Friefelder, D. (1982). Physical Biochemistry: Applications to Biochemistry and Molecular Biology 2nd Ed. W. H. Freeman

- Hoppert, M. (2005). Microscopic Techniques in Biotechnology, Wiley-Blackwell.
- Venn, R. F. (2002). Principles and Practice of Bioanalysis 1st Ed. Taylor and Francis, London.
- Van Impe, J.F.M., Vanrolleghem, P. A. & Iserentant, D. M. (1998). Advanced Instrumentation, Data Interpretation, and Control of Biotechnological Processes, Springer Science + Business media
- Glusker, J.P. & Trueblood, K.N. (1985).Crystal Structure Analysis: a primer by Oxford University Press.
- Rhodes, G. (1993).Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models, Academic Press Inc.
- Gunter, H. (1992).NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, Wiley India Pvt. Limited.
- Van Holde, K. E., Johnson, W. C. & Ho, P. S. (2006). Principles of Physical Biochemistry" by Prentice Hall

BIOSAFETY, BIOETHICS & IPR

Course Code: MSB131

Credit Unit:03

Theory: Course Objective:

To create awareness on IPR issues and need for knowledge in patents in biotechnology, understand the biosafety regulations and ethical practices in biotechnology and become familiarize with the ethical practices in biotechnology.

Module-1:

Intellectual Property: Patents, Trademarks, Copyright, Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of GMOs,IPs of relevance to Biotechnology and Case Studies; Agreements and Treaties, Indian Patent Act 1970 & recent amendments.

Module-2:

Patents and Concept of Prior Art: Types of patent applications, Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and complete; Forms and fees, Invention in context of "prior art".

Module-3:

Patent Filing Procedures: National & PCT filing procedure; Time frame and cost; Status of the patent applications filed; Precautions while patenting-disclosure/non-disclosure; Patent licensing and agreement Patent infringement.

Module-4:

Biosafety: Introduction to Biological Safety Cabinets; Biosafety Levels of Specific Microorganisms; Biosafety guidelines:Definition of GMOs & LMOs; Roles of Institutional Biosafety Committee, applications in food and agriculture; Environmental release of GMOs; Risk Analysis, Risk management and communication; National Regulations and relevant International Agreements,Cartegana Protocol.

Module-5:

Bioethics: Ethical implications of biotechnological products and techniques, Social and ethical implications of biological weapons.

Evaluation:

Components	Mid Term	Attendance	Assignment/	Class	Viva	EE
			Project/Seminar/Quiz	Test		
Weightage (%)	15	5	10	10	10	50

Books Recommended:

Text books:

- 1. Deepa Goel & Shomini Parashar IPR, Biosafety and Bioethics, Pearson Education India, (2013)
- 2. Anupam Singh Intellectual Property Rights and Bio-Technology Biosafety and Bioethics, Narendra Publishing House, (2012)

Reference books:

- 1. BAREACT, Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., (2007)
- 2. Kankanala C., Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd., (2007)

INDUSTRIAL SAFETY AND HAZARDS

Course Code: MSB132

Credit Unit:03

Theory

Course Objective:

Course addresses management and engineering design concepts required for process safety in chemical and biotechnology systems, with pharmaceutical manufacturing applications. Content focuses on sound engineering principles and practices as they apply to industrial situations, project design, risk mitigation, process and equipment integrity, and engineering codes and standards.

Course Contents:

Module I: Hazards

Chemical hazards classification. Radiation hazards and control of exposure to radiation. Types of fire and fire prevention methods. Mechanical hazards. Electrical hazards

Module II: Psychology and Hygiene

Industrial psychology Industrial hygiene. Safety in plant site selection and plant layout. Industrial lighting and ventilation. Industrial noise.

Module III: Occupational diseases and control

Occupational diseases and prevention methods. Safe housekeeping, Instrumentation for safe operation. Personal protective equipments. Safety in chemical operations and processes.

Module IV: Management

Safety organization – safety committee – safety education and training. Management process. Philosophy and need for Industrial safety. Role of Government in Industrial safety.

Module V: Laws

Factory Act. ESI Act, Environmental Act. Workment - comperation Act. Advantages of adopting safety laws.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Guide for Safety in the Chemical laboratory second edition, Manufacturing Chemists Allocation. Van vostrand Reinhold Company, New York.
- Anonymous (1972). Guide for Safety in the Chemical Laboratory , 2nd Ed., Van Nostrand Reinhold Co., Litton Educational Publishing, Inc., New York
- Fawcett, H.H. & Wood, W.S. (1982). Safety and Accident Prevention in Chemical Operation, 2nd Ed. John Wiley and sons, New York.

References:

• Industrial Safety and Laws by Indian School of Labour Education, Madras.

COMMUNICATION SKILLS – I

Course Code: BCS111

Credit Unit:01

Course Objective:

The Course is designed to give an overview of the four broad categories of English Communication thereby enhance the learners' communicative competence.

Course Contents:

Module I: Listening Skills

Effective Listening: Principles and Barriers Listening Comprehension on International Standards

Module II: Speaking Skills

Pronunciation and Accent Reading excerpts from news dailies & magazines Narrating Incident; Story telling. Extempore & Role Plays

Module III: Reading Skills

Vocabulary: Synonyms, antonyms, diminutives, homonyms, homophones Idioms & phrases Foreign words in English

Module IV: Writing Skills

Writing Paragraphs Précis Writing Letter writing Coherence and structure Essay writing

Module V: Activities

News reading Picture reading Movie magic Announcements

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	Α
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP – Group Presentation

Text & References:

- Working in English, Jones, Cambridge
- Business Communication, Raman Prakash, Oxford
- Speaking Personally, Porter-Ladousse, Cambridge
- Speaking Effectively, Jermy Comfort, et.al, Cambridge

Behavioural Science I (Self Development and Interpersonal Skills)

Course Code: BSS111

Credit Unit:01

Course Objective:

This course aims at imparting an understanding of: Self and the process of self exploration Learning strategies for development of a healthy self esteem Importance of attitudes and their effect on work behaviour Effective management of emotions and building interpersonal competence.

Course Contents:

Module I: Understanding Self

Formation of self concept Dimension of Self Components of self Self Competency

Module II: Self-Esteem: Sense of Worth

Meaning and Nature of Self Esteem Characteristics of High and Low Self Esteem Importance & need of Self Esteem Self Esteem at work Steps to enhance Self Esteem

Module III: Emotional Intelligence: Brain Power

Introduction to EI Difference between IQ, EQ and SQ Relevance of EI at workplace Self assessment, analysis and action plan

Module IV: Managing Emotions and Building Interpersonal Competence Need and importance of Emotions

Healthy and Unhealthy expression of emotions Anger: Conceptualization and Cycle Developing emotional and interpersonal competence Self assessment, analysis and action plan

Module V: Leading Through Positive Attitude

Understanding Attitudes Formation of Attitudes Types of Attitudes Effects of Attitude on Behaviour Perception Motivation Stress Adjustment Time Management Effective Performance Building Positive Attitude

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	Α	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25
TIODE					

Text & References:

- Towers, Marc: Self Esteem, 1st Edition 1997, American Media
- Pedler Mike, Burgoyne John, Boydell Tom, A Manager's Guide to Self-Development: Second edition, McGraw-Hill Book Company.
- Covey, R. Stephen: Seven habits of Highly Effective People, 1992 Edition, Simon & Schuster Ltd.
- Khera Shiv: You Can Win, 1st Edition, 1999, Macmillan
- Gegax Tom, Winning in the Game of Life: 1st Edition, Harmony Books
- Chatterjee Debashish, Leading Consciously: 1998 1st Edition, Viva Books Pvt. Ltd.
- Dr. Dinkmeyer Don, Dr. Losoncy Lewis, The Skills of Encouragement: St. Lucie Press.
- Singh, Dalip, 2002, Emotional Intelligence at work; First Edition, Sage Publications.
- Goleman, Daniel: Emotional Intelligence, 1995 Edition, Bantam Books
- Goleman, Daniel: Working with E.I., 1998 Edition, Bantam Books.

FRENCH – I

Course Code: FLT 111

Credit Unit:02

Course Objective:

To familiarize the students with the French language

- with the phonetic system
- with the syntax
- with the manners
- with the cultural aspects

Course Contents:

Module A: pp. 01 to 37: Unités 1, 2, Unité 3 Objectif 1,2

Only grammar of Unité 3: objectif 3, 4 and 5

Contenu lexical: Unité 1 : Découvrir la langue française : (oral et écrit)

- 1. se présenter, présenter quelqu'un, faire la connaissance des
- autres, formules de politesse, rencontres
- 2. dire/interroger si on comprend

3. Nommer les choses

Unité 2: Faire connaissance

- 1. donner/demander des informations sur une personne, premiers
- contacts, exprimer ses goûts et ses préférences
- 2. Parler de soi: parler du travail, de ses activités, de son pays, de sa ville.

Unité 3: Organiser son temps

1. dire la date et l'heure

Contenu grammatical:

- organisation générale de la grammaire
 article indéfini, défini, contracté
- 3. nom, adjectif, masculin, féminin, singulier et pluriel
- 4. négation avec « de », "moi aussi", "moi non plus"
- 5. interrogation : Inversion, est-ce que, qui, que, quoi, qu'est-ce que, où, quand, comment, quel(s), quelle(s)
 Interro-négatif : réponses : oui, si, non
- 6. pronom tonique/disjoint- pour insister après une préposition
- 7. futur proche

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I - Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN – I

Course Code: FLG 111

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Introduction

Self introduction: heissen, kommen, wohnwn, lernen, arbeiten, trinken, etc.

All personal pronouns in relation to the verbs taught so far.

Greetings: Guten Morgen!, Guten Tag!, Guten Abend!, Gute Nacht!, Danke sehr!, Danke!, Vielen Dank!, (es tut mir Leid!),

Hallo, wie geht's?: Danke gut!, sehr gut!, prima!, ausgezeichnet!,

Es geht!, nicht so gut!, so la la!, miserabel!

Module II: Interviewspiel

To assimilate the vocabulary learnt so far and to apply the words and phrases in short dialogues in an interview - game for self introduction.

Module III: Phonetics

Sound system of the language with special stress on Dipthongs

Module IV: Countries, nationalities and their languages

To make the students acquainted with the most widely used country names, their nationalitie and the language spoken in that country.

Module V: Articles

The definite and indefinite articles in masculine, feminine and neuter gender. All Vegetables, Fruits, Animals, Furniture, Eatables, modes of Transport

Module VI: Professions

To acquaint the students with professions in both the genders with the help of the verb "sein".

Module VII: Pronouns

Simple possessive pronouns, the use of my, your, etc. The family members, family Tree with the help of the verb "to have"

Module VIII: Colours

All the color and color related vocabulary - colored, colorful, colorless, pale, light, dark, etc.

Module IX: Numbers and calculations – verb "kosten"

The counting, plural structures and simple calculation like addition, subtraction, multiplication and division to test the knowledge of numbers.

"Wie viel kostet das?"

Module X: Revision list of Question pronouns

W - Questions like who, what, where, when, which, how, how many, how much, etc.

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

Page 25 of 71

Credit Unit:02

SPANISH – I

Course Code: FLS 111

Credit Unit:02

Course Objective:

To enable students acquire the relevance of the Spanish language in today's global context, how to greet each other. How to present / introduce each other using basic verbs and vocabulary

Course Contents:

Module I

A brief history of Spain, Latin America, the language, the culture...and the relevance of Spanish language in today's global context. Introduction to alphabets

Module II

Introduction to '*Saludos*' (How to greet each other. How to present / introduce each other). Goodbyes (despedidas) The verb *llamarse* and practice of it.

Module III

Concept of Gender and Number

Months of the years, days of the week, seasons. Introduction to numbers 1-100, Colors, Revision of numbers and introduction to ordinal numbers.

Module IV

Introduction to *SER* and *ESTAR* (both of which mean To Be). Revision of '*Saludos*' and '*Llamarse*'. Some adjectives, nationalities, professions, physical/geographical location, the fact that spanish adjectives have to agree with gender and number of their nouns. Exercises highlighting usage of *Ser* and *Estar*.

Module V

Time, demonstrative pronoun (Este/esta, Aquel/aquella etc)

Module VI

Introduction to some key AR /ER/IR ending regular verbs.

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras

CHINESE – I

Course Code: FLC 111

Credit Unit:02

Course Objective:

There are many dialects spoken in China, but the language which will help you through wherever you go is Mandarin, or Putonghua, as it is called in Chinese. The most widely spoken forms of Chinese are Mandarin, Cantonese, Gan, Hakka, Min, Wu and Xiang. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Show pictures, dialogue and retell.
Getting to know each other.
Practicing chart with Initials and Finals. (CHART – The Chinese Phonetic Alphabet Called "Hanyu Pinyin" in Mandarin Chinese.)
Practicing of Tones as it is a tonal language.
Changes in 3rd tone and Neutral Tone.

Module II

Greetings Let me Introduce The modal particle "ne". Use of Please 'qing" – sit, have tea etc. A brief self introduction – Ni hao ma? Zaijian! Use of "bu" negative.

Module III

Attributives showing possession How is your Health? Thank you Where are you from? A few Professions like – Engineer, Businessman, Doctor, Teacher, Worker. Are you busy with your work? May I know your name?

Module IV

Use of "How many" – People in your family? Use of "zhe" and "na". Use of interrogative particle "shenme", "shui", "ma" and "nar". How to make interrogative sentences ending with "ma". Structural particle "de". Use of "Nin" when and where to use and with whom. Use of guixing. Use of verb "zuo" and how to make sentences with it.

Module V

Family structure and Relations. Use of "you" – "mei you". Measure words Days and Weekdays. Numbers. Maps, different languages and Countries. **Examination Scheme:**

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader Part I" Lesson 1-10

ADVANCE PLANT BIOTECHNOLOGY

Course Code: MSB201

Theory

Course Objective:

The present course aims to give an exposure to advancement in plant biotechnology, where students will learn about culture of plants, cloning, induced genetic variability, genetic engineering and their practical importance. The course will improve skills related to plant biotechnology.

Course Contents:

Module I

Micropropagation: Concept of totipotency, Importance of micropropagation, Nutrient media, process, various methods of micropropagation, factors affecting micropropagation, acclimatization, somaclonal variation, applications, advantages and limitation of micropropagation.

Module II

Protoplast culture: Importance, isolation, purification and viability of protoplast, protoplast culture methods, various methods of fusion, isolation of desired fusion product, protoplast regeneration and factors affecting, fate of fusion, application of protoplast culture

Module III

Suspension culture: Concept, Significance and application of suspension culture, different methods of suspension culture, factors affecting culture, secondary metabolite production through in vitro culture methods, hairy root culture, advantages and limitation of suspension culture.

Module IV

Genetic engineering: Concept, Importance, gene, markers, vectors, recombinant DNA, indirect and direct gene transfer techniques, gene expression, *Agrobacterium* as a natural genetic engineer.

Module V

Application of transgenic plants and bioethics

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text

- Plant Tissue Culture: Theory and Practice by S.S. Bhojwani and M.K. Razdan, Elsevier New York, a revised Ed (1996).
- Introduction to plant tissue culture by M.K. Razdan, Science Publishers Inc., New Hampshire USA, 2nd Ed (2002).
- Plant Biotechnology by K.G. Ramawat, S. Chand Publication, New Delhi (2004).

Reference

- Plant Propagation by Tissue Culture by Annonymous: the background.volume 1. (Eds. George, Edwin F, Hall, M. A and De Klerk, Geert-Jan) Springer, 3rd Edition Dordrecht, London (2007).
- Acclimatization of tissue-cultured plants by B. N. Hazarika, Current Science, 85 (12): 1704-1712 (2003).
- Endosperm culture: a novel method for triploid plant production by T. D. Thomas and R. Chaturvedi, Plant Cell Tiss Organ Cult 93:1–14 (2008).
- Embryo Rescue In: Plant Development and Biotechnology by S. M. Reed Publisher: CRC Press LLC, pp 235-239 (2005).
- ✤ An epigenetic view of plant cells cultured *in vitro*: somaclonal variation and beyond by Ce' lia Miguel and L. Marum Journal of Experimental Botany, 1-13 (2011).

Credit Unit: 03

ADVANCED ANIMAL BIOTECHNOLOGY

Course Code: MSB 202

Credit Unit: 03

THEORY

Course Objective: The aim of the course is to provide equal importance to areas like in vitro fertilization, animal cell and tissue culture, hormone vaccine and important enzyme production through animal biotechnology.

Course Contents:

Module I

Culture media – Natural and defined media, Primary culture – Steps, Mechanical and enzymatic disaggregation, Cell lines – Maintenance of cell line, Tissue and organ culture, Cell growth kinetics; Cryopreservation, Contamination

Module II

Polyclonal and monoclonal antibodies, Advantages and disadvantages of monoclonal antibodies, Production strategy, Use of monoclonal antibodies, Therapeutic monoclonal antibodies.

Module III

Vaccines; Types of vaccines - First generation vaccine, Second generation vaccine, Recombinant subunit vaccine, Peptide vaccine, Nucleic acid vaccines.

Module IV

In vitro fertilization-steps, Embryo transfer -Steps, Advantages and disadvantages of IVF-ET; Gene transfer methods - Viral and non viral methods, Expression vector systems,

Module V

Biopharming - transgenic animals as bioreactors for producing pharmaceutically important compounds and therapeutic proteins; Bioethical issues related to animal biotechnology

Examination Scheme

Components	Mid	Attendance	Assignment/	Class Test	Viva	EE
	Term		Project/Seminar/Quiz			
Weightage (%)	15	5	10	10	10	50

Text books:

- 1. Ramdass, P. (2014). Animal Biotechnology Recent concepts and developments. MJP publishers
- Masters, J. R. (Ed.). (2000). Animal cell culture: a practical approach (pp. 3-10). New York: Oxford University Press.

Reference Books:

1. Freshney, R. I. (Ed.). (1986). Animal cell culture: a practical approach (Vol. 8). Oxford: IRL press.

ADVANCED STRUCTURAL BIOLOGY

Course Code: MSB 203

Credit Unit: 03

Course Objective:

The course aims to provide an understanding of the principles and applications of proteins, enzymes and nucleic acids for their role in biochemical pathway as well as interactions among themselves.

Course Contents:

Module I: Introduction to structural biology and Fundamentals of protein structure

Structural biology Introduction and applications; Side chain structure and function in protein folding and functionality: Secondary structure of proteins-helices, sheets, loops and turns; Structural and functional proteins. Tertiary structure of proteins: alpha domain structures beta domain structures, alpha-beta domain structures, homo and hetero-dimers, trimers and tetramers; forces governing protein-protein interactions; open tertiary structure; Classification of proteins; Sequence and structural motifs in proteins,

Module II: Structural and Functional relationships of Proteins

Structure and function of an antibody; structure of hemoglobin, structure of muscle proteins; structure of viruses and viral proteins: structure and function of membrane proteins.

Module III: Determination of protein structures

Techniques used for three dimensional structure determinations of proteins: X-ray diffraction, NMR spectroscopy and electron microscopy.

Module IV: Protein solubility and stabilization

Salting in and salting out, Parameters affecting; enthalpic and entropic stabilization, mutations increasing stability, helix capping; Native, partially denatured and denatured proteins; Protein denaturation, Physical and chemical denaturants; Refolding

Module V: DNA structure

Covalent structure of DNA, base pairing, hydrogen bonding, DNA melting and annealing, difference between AT and GC pairing, DNA models, The Watson Crick model; Crystal structure of B-DNA, major and minor groves, dyad symmetry, base pair stacking, propellor twist, A and Z- DNA, triple stranded DNA, telomeric sequences and structure, G-quartets, palindromic and tandem sequences, Base pair flipping and DNA bulges, DNA methylation; Protein-DNA interactions; drug-DNA interactions; Databases of sequences and structure for protein and DNA, public domain softwares for visualizing and modeling biomolecules -Rasmol, Deepview, Whatif, RCSB.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Introduction to Protein Structure, C. Branden and J Tooze, Garland Publishing Company, New York. 2010.
- Textbook of Structural Biology, Anders Liljas, Lars Liljas and Poul, World Scientific Publishing Co Pte Ltd.

- Protein Structure, M. Perutz, Oxford University Press.
- Structural Biology of Viruses, Wah Chiu, Roger M. Burnett and Robert Garce, Oxford University Press.
- Structure and Mechanism in Protein Science, Alan Fersht.

ADVANCE BIOSTATISTICS AND SCIENTIFIC WRITING

Course Code: MSB204

Credit Unit: 03

Theory

Objective:

To develop the skills and knowledge in research, types of research, interdisciplinary research, scientific methods of research, criteria of effective research, scientific interpretation of data using the biostatistics tools, scientific writing skills, and characteristics of an effective researcher.

UNIT-I

Research Formulation - Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Importance of literature review in defining a problem - Literature review - Primary and secondary sources - reviews, treatise, monographs-patents - web as a source - searching the web - Critical literature review - Identifying gap areas from literature review - Development of working hypothesis. **UNIT-II**

Research design and methods - Research design - Basic Principles- Need of research design - Features of good design - Important concepts relating to research design - Observation and Facts, Laws and Theories, Prediction and explanation, Induction, Deduction, Development of Models. Developing a research plan - Exploration, Description, Diagnosis, Experimentation. Determining experimental and sample designs.

UNIT-III

Data Collection and analysis: Execution of the research - Observation and Collection of data - Methods of data collection - Sampling Methods, Sampling Errors - Data Processing and Analysis strategies - Hypothesis-testing - Generalization and Interpretation.

UNIT-IV

Quantitative Methods: Data presentation, statistical analysis and interpretation of data, types of analysis, simple regression analysis, correlation, coefficient of determination, (r2), z-test, t-test, ANOVA, Chi.square test, multi-variate analysis of data, multiple regression. Computer Application : Role of computer in research, data organization, software selection and its applications, solving problems by using scientific software and tools, sample programmes for analysis of data.

UNIT-V

Reporting and scientific writing: Structure and components of scientific reports, types of report, research

paper report, review paper report, technical reports and thesis. Thesis writing - different steps and software tools (LaTeX.) in the design and preparation of thesis, layout, structure (chapter plan) and language of typical reports, Illustrations and tables, bibliography, referencing and footnotes. Oral presentation - planning, software tools, creating and making effective presentation, use of visual aids, importance of effective communication. Selection of scientific journal based on indexing with Web of Science, Scopus etc., communication of manuscript with journals, revision in manuscripts.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	<mark>10</mark>	50

Text & References:

Text:

- C. R. Kothari, Research Methodology: Methods & Techniques, Wishwa Publication
- . D K Bhattacharyya, Research Methodology, Excel Books
- Loraine Blaxter, Christina Hughes, Molcolm Tight, How to Research, Viva Books Pvt. Ltd.
- Research papers / web articles in the field of research methodology.

- Introduction to Biostatistics, Ronald N. Forthfer and Eun Sun Lee .Publisher: Elsevier.
- Biostatistics: A foundation for analysis in the Health Sciences, W.W Daniel. Publisher: John Wiley and Sons.
- Statistical Methodology, S.P Gupta. Publisher: S. Chand & Co.

MEDICAL BIOTECHNOLOGY

Course Code: MSB205

Theory Course Objective:

Credit Unit: 03

To develop an understanding of role of biochemistry and molecular biology in the diagnosis and clinical management of disease.

Course Contents:

Module I

Diagnostic tools and Procedures: Antigens and antibodies-based assay, Nucleic Acid Based Assays, Culture based diagnostics approach, Radio-imaging techniques. Role of pharmacological testing in clinical management of disease.

Module II

Biochemical test: Different biochemical test using protein and enzyme markers and their interpretation. Kidney Function test, Liver function test, blood sugar test, hormone assay, Newborn Screening etc. Biochemical tests on different bacteria different biochemical compounds.

Module -III

Identification of disease agents, Mode of spread of infections- Skin, wound & burn, alimentary tract, blood infection, laboratory infection, nosocomial infections, infections in immune-compromised patients etc., Epidemiology-epidemics, pandemics and endemics disease. Control measure of microbial diseases-public health control methods. Hygiene regulations, population screening for disease.

Module IV

Clinically important taxonomic grouping of pathogens: Infection, diagnosis, treatment & Prevention-Coronaviruses, Influenza virus, Hepatitis viruses- A, B, C and E, Dengue, Japanese Encephalitis Virus and Chikungunya etc. Clinically important taxonomic grouping of bacteria- Staphylococci, Streptococci, Pneumococcus, Neisseria, Campylobacter, Mycobacteria, etc. Clinically important fungal infection-Aspergillosis, Mucormycosis (Black fungus) and Candidiosis etc.

Module V

Disease and therapy

Therapeutic intervention in blood disorder by stem therapy. Treatment products from recombinant and nonrecombinant organisms, Interferons, Antisense therapy, Gene therapy, Stem Cell therapy and Immunotherapy; Modes of action of major groups of antimicrobial agents. Disease: Types, Causes, Symptoms, diagnosis and treatment of genetic Diseases, Diabetes, Cardiovascular disease and Cancer.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Marshall, W J, Clinical Chemistry, 3rd edition, Mosby, 1997.
- Harper's Biochemistry K. Robert, M.D. Murray, D.K. Granner, P.A. Mayes and V.I. Rodwell, McGraw Hill/ Appleton and Lange

- Sudbery, P. Human molecular genetics. Addison Wesley Longman (1998)
- Principles of Biochemistry, A.L. Lehninger, D.L. Nelson, M.M. Cox., Worth Publishing
- Principles of Physical Biochemistry, K.E. Van Holde, W.C. Johnson, Prentice Hall
- Tools of Biochemistry, T.G. Cooper, John Wiley and Sons Inc.
- Enzymes Biochemistry, Biotechnology, Clinical Chemistry, Trevor Palner
- Biochemistry (Fifth Edition), Lubert Stryer
- Physical Biochemistry, David Freifeider
- Annual Review of Biochemistry (1995-2004)
- Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady State Enzyme Systems, I.H. Segel, Wiley-Interscience
- Industrial Enzymes & their applications, H. Uhlig., John Wiley and Sons Inc.

ADVANCE PLANT BIOTECHNOLOGY -Lab

Course Code: MSB221

Course Objective:

Credit Unit: 01

The present course aims to acquaint the students with lab-scale in vitro propagation of plants.

Course Contents:

Module I

Media preparation and sterilization.

Module II

Effect of cytokinins and auxins on explants.

Module III

Embryo rescue.

Module IV

Seed viability test and in vitro seed germination study **Examination Scheme:**

		IA	EE			
Practical (Mid Term)	Viva	Regular Performance	Attendance	Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

ADVANCED ANIMAL BIOTECHNOLOGY -Lab

Course Code: MSB222

Credit Unit: 01

Course Contents:

- 1. To study the establishment of animal cell culture lab
- 2. Reagent preparation for cell culture
- 3. Culture and maintenance of cells
- 4. Passaging of cells
- 5. Cells quantitation
- 6. Cell viability assay
- 7. Apoptosis assay
- 8. Study of cytotoxicity under invitro model.
- 9. Cryopreservation of cells

Examination Scheme:

		IA	EE			
Practical (Mid Term)	Viva	Regular Performance	Attendance	Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

ENVIRONMENTAL BIOTECHNOLOGY

Course Code: MSB230

Credit Unit: 03

Theory

Course Objective:

The objective of this course is to familiarize the students with the processes and micro organism that can be employed for a cleaner environment. The students will be applying basic knowledge of microbiology for developing the practices for a cleaner environment, water, fuel, fertilizer, pesticides etc. The course also aims to make the students aware of legislation and acts prevalent to control the degradation of our eco system.

Course Contents:

Module I

Treatment of municipal wastes and industrial effluents (Physico-Chemical, biological analysis of waste water), Rr. Sec and test waste water treatment sludge treatment and disposal treatment of wastes from paper, textile, dairy, petrochemical and pharmaceutical industry.

Module II

Bioremediation and phytoremediation of toxic compounds like pesticides, hydrocarbons, polymers, surfactants, biotransformation and bioaccumulation

Module III

Renewable and non-renewable energy resources, clean fuel technology, biofuels.

Module IV

Biofertilizers and biopesticides – a cleaner agricultural practice, concept of N_2 - fixation, azolla, cyanobacteria, Rhizobium and VAM as biofertilizers.

Module V

Biomining – microbe assisted microbial leaching, bioaccumulation and bio sorption

Biosensors and biomarkers for ecotoxicity measurement, EIA and Environmental audit.

Principles in ecotoxicology; animal toxicity tests; statistical concepts of LD_{50} ; dose-effect and dose response relationship; frequency response and cumulative response; Biological and chemical factors and influence toxicity; global dispersion of toxic substance; dispersion and circulating mechanisms of pollutants; Aquatic toxicity testes; statistical tests; response of planktons to toxicants; EC_{50} ;

Examination Scheme:

Components	Mid Term	Attendance	Assignment/	Class	Viva	EE
			Project/Seminar/Quiz	Test		
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Environmental Biotechnology Concepts and Applications, Hans-Joachim Jordening and Jesef Winter
- Introduction to Environmental Biotechnology, Milton Wainwright

- Waste Water Engineering, Metcalf and Eddy. Publisher: Tata McGraw hill
- Agricultural Biotechnology, S.S. Purohit
- Environmental Microbiology: Methods and Protocols, Alicia L. Ragout De Spencer, Jonh F.T. Spencer Principles of Environmental Engineering, Gilbert Masters

ENTREPRENEURSHIP DEVELOPMENT IN BIOTECHNOLOGY

Course Code: MSB231

Credit Unit: 03

Theory

Course Objectives:

To develop awareness about the biotechnology enterprise and Exposure of management principles and the global scenario of biotechnology industries by discussing the various aspects of bio-entrepreneurships, project management, biotech enterprises, business development in biotechnology and entrepreneurship opportunity in industrial biotechnology

Module-I

BIO ENTERPREUNERSHIP: Introduction to bio-business, from the Indian context, SWOT analysis of biobusiness. Entrepreneur, Creativity & Entrepreneurial personality and Entrepreneurship in Biotechnology, pillars of bio-entrepreneurship and major start-ups in Biotechnology, Concept and theories of Entrepreneurship, Entrepreneurial traits and motivation, Nature and importance of Entrepreneurs, Government schemes for commercialization of technology (eg, Biotech Consortium India Limited).

Module-II

PROJECT MANAGEMENT: Meaning of Project; Project Identification; Project Selection; Project Report; Need and Significance of Report; Contents; Formulation; Guidelines by Planning Commission for Project report; Network Analysis; Errors of Project Report; Project Appraisal.

Module-III

BIOTECH ENTERPRISES: Desirables in start-up, Setting up Small, Medium & Large scale industry, Quality control in Biotech industries, Location of an enterprise, steps for starting a small industry, incentives and subsidies, exploring export possibilities.

Module-IV

BUSINESS DEVELOPMENT IN BIOTECHNOLOGY: Factors affecting biotech business: (finance, infrastructure, equipment, manpower, resources, project location, end product, quality issues, etc) Basic principles and practices of management – Definition, concepts and application; Organization types, coordination, control and decision making in management

Module-V

ENTREPRENEURSHIP OPPORTUNITY IN INDUSTRIAL BIOTECHNOLOGY: Business opportunity, Essential requirement, marketing strategies, schemes, challenges and scope-with case study- Pollution monitoring and Bioremediation for Industrial pollutants, Pesticides, Herbicides etc. Integrated compost production- microbe enriched compost. Bio pesticide/insecticide production. Fermented products-probiotic and prebiotics. Stem cell production, stem cell bank, contract research. Production of monoclonal/polyclonal antibodies, Single cell protein and secondary metabolite production. Contact research in microbial genomics. **Examination Scheme:**

Components	Mid Term	Attendance		Class	Viva	EE
			Project/Seminar/Quiz	Test		
Weightage (%)	15	5	10	10	10	50
G	-					

Suggested Book:

- 1. Dynamics of Entrepreneurial Development and Management by Vasant Desai, Himalaya Publishing House, 2005.
- 2. Science Business: The Promise, the Reality, and the Future of Biotech by Gary P. Pisano Harvard Business School Press: 2006.
- 3. Innovation and entrepreneurship in biotechnology: Concepts, theories & cases by D. Hyne & John Kapeleris, 2006
- R. Principles of Management P. C. Tripathi, P.N. Reddy Tata McGraw Hill Fifth Edition, 2012
- 5. Bio Entrepreneurship development-A resource book by BCIL, Govt of India 2018.

PHARMACEUTICAL TECHNOLOGY & BIOTECHNOLOGY Course Code: MSB232 Credit Unit: 03

Theory

Course Objective:

The main objectives are to cover representative pharmaceutical dosage forms and general issues of formulation, production, quality requirements, validation and uses and to gain an understanding of the challenges associated with quality pharmaceutical manufacturing

Pharmaceutical Technology:

Module –I:

Introduction to Physical Pharmaceutics – Metrology, Calculations and Posology.

Pharmacopoeias & Formularies: IP,BP,USP

Packaging of Pharmaceuticals: Polymer Science and Applications, Formulations and Development, Packaging Particulate Technology: Particle Size, Size reduction, Size Separation, Powder Flow and Compaction Unit Operations: Mixing, Evaporation, Filtration, Centrifugation, Extraction, Distillation, Sterilization, and Drying

Module-II

Pharmaceutical Dosage Forms & New Drug Delivery Systems:

Introduction to different dosage forms, their classification with examples (Official formulation), their relative application. Various route of drug administration.

Drug delivery systems: transdermal, parenteral, oral, mucosal, ocular, buccal, rectal and pulmonary delivery. Novel formulation approaches for better delivery of biotechnology derived drugs, such as reverse micelles, liposomes, microemulsions and microencapsulation.

Pharmaceutical Biotechnology:

Module III

Immunity & Immunological preparations.

Introduction about Immunity, Types of Immunity, Immunological preparations, Classification of Immunological preparations, Bacterial & Viral Vaccinces, Method of preparation using animals, Alternative method using eggs, Diagnostic preparations containing bacterial toxins, Preparation containing antibodies used to produce passive immunity.

Blood & blood Products:

Module-IV

Blood Products and Plasma Substitutes: Collection, processing and storage of whole human blood, concentrated human RBCs, dried human plasma, human fibrinogen, human thrombin, human normal immunoglobulin, human fibrin, fibrin foam, plasma substitutes: ideal requirements, PVP, dextran.

Module-V

Pharmaceutical Biotechnology based drug Products:

Introduction, Method of Preparation and Use of :Activase, Humulin,Streptokinase Humatrope, Hepatitis B vaccine.

Introduction, Method of Preparation and Use of : Penicillins, streptomycins, tetracyclines, vitamin B12 & ethanol.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Suggested Books:

- 1. Pharmaceutical Biotechnology, by Daan J. A. Crommelin, Robert D. Sindelar. Informa Healthcare USA, Inc, 3rd edition.
- 2. Textbook of Pharmaceutical Biotechnology, By Chandrakant Kokate, Pramod H.J, SS Jalalpure , Publisher: Elsevier India Pvt Ltd.
- 3. Vyas SP, Dixit VK."Pharmaceutical Biotechnology", 1st edition ,2007, CBS Publishers & Distributors, New Delhi

COMMUNICATION SKILLS - II

Course Code: BCS211

Credit Unit: 01

Course Objective:

To enrich the understanding of English language and communication, structure, style, usage, and vocabulary for global business purposes.

Course Contents:

Module I: Fundamentals of Communication

Role and purpose of communication: 7 C's of communication Barriers to effective communication Enhancing listening Forms of Communication: one-to-one, informal and formal

Module II: Verbal Communication (Written)

Business Letter Social correspondence Writing resume and Job applications

Module III: Speaking skills

Conversational English Guidelines to give an effective presentation Activities to include: Presentations by students Just a minute

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	Α
Weightage (%)	20	20	25	10	10	10	5

CAF – Communication Assessment File

GD – Group Discussion

GP - Group Presentation

- Business Communication, Raman Prakash, Oxford
- Textbook of Business Communication, Ramaswami S, Macmillan
- Speaking Personally, Porter-Ladousse, Cambridge

Behavioural Science – II (Behavioral Communication and Relationship Management) Course Code: BSS211 Credit Unit: 01

Course Objective:

This course aims at imparting an understanding of:

Process of Behavioural communication

Aspects of interpersonal communication and relationship

Management of individual differences as important dimension of IPR

Course Contents:

Module I: Behavioural Communication

Scope of Behavioural Communication

Process - Personal, Impersonal and Interpersonal Communication

Guidelines for developing Human Communication skills

Relevance of Behavioural Communication in relationship management

Module II: Managing Individual Differences in Relationships

Principles

Types of issues

Approaches

Understanding and importance of self disclosure

Guidelines for effective communication during conflicts

Module III: Communication Climate: Foundation of Interpersonal Relationships

Elements of satisfying relationships

Conforming and Disconfirming Communication

Culturally Relevant Communication

Guideline for Creating and Sustaining Healthy Climate

Module IV: Interpersonal Communication

Imperatives for Interpersonal Communication

Models - Linear, Interaction and Transaction

Patterns - Complementary, Symmetrical and Parallel

Types - Self and Other Oriented

Steps to improve Interpersonal Communication

Module V: Interpersonal Relationship Development

Relationship circle - Peer/ Colleague, Superior and Subordinate

Initiating and establishing IPR

Escalating, maintaining and terminating IPR

Direct and indirect strategies of terminating relationship

Model of ending relationship

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	Α	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Vangelist L. Anita, Mark N. Knapp, Inter Personal Communication and Human Relationships: Third Edition, Allyn and Bacon
- Julia T. Wood. Interpersonal Communication everyday encounter
- Simons, Christine, Naylor, Belinda: Effective Communication for Managers, 1997 1st Edition Cassell
- Harvard Business School, Effective Communication: United States of America
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.

FRENCH - II

Course Code: FLT 211

Course Objective:

- To enable the students to overcome the fear of speaking a foreign language and take position as a foreigner speaking French.
- To make them learn the basic rules of French Grammar.

Course Contents:

Module A: pp.38 - 47 : Unité 3 : Objectif 3, 4, 5. 6

Module B: pp. 47 to 75 Unité 4, 5

Contenu lexical: Un	ité 3: Organiser son temps						
	 donner/demander des informations sur un emploi du temps, un horaire SNCF – Imaginer un dialogue rédiger un message/ une lettre pour 						
	 i) prendre un rendez-vous/ accepter et confirmer/ annuler ii) inviter/accepter/refuser 						
	 Faire un programme d'activités imaginer une conversation téléphonique/un dialogue Propositions- interroger, répondre 						
Uni	té 4: Découvrir son environnement						
	1. situer un lieu						
	2. s'orienter, s'informer sur un itinéraire.						
	3. Chercher, décrire un logement						
	4. connaître les rythmes de la vie						
	nité 5: s'informer						
	1. demander/donner des informations sur un emploi du temps passé.						
	2. donner une explication, exprimer le doute ou la certitude.						
	3. découvrir les relations entre les mots						
	4. savoir s'informer						
Contenu grammatical:	1. Adjectifs démonstratifs						
C	 Adjectifs possessifs/exprimer la possession à l'aide de : i. « de » ii. A+nom/pronom disjoint 						
	 Conjugaison pronominale – négative, interrogative - 						
	construction à l'infinitif						
	4. Impératif/exprimer l'obligation/l'interdiction à l'aide de « il						
	faut»/ «il ne faut pas»						
	5. passé composé						

- 5. passé composé
- 6. Questions directes/indirectes

Examination Scheme:

Components	CT1	CT2	C	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C - Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

Credit Unit: 02

GERMAN – II

Course Code: FLG 211

Credit Unit: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Grammar to consolidate the language base learnt in Semester I

Course Contents:

Module I: Everything about Time and Time periods

Time and times of the day. Weekdays, months, seasons. Adverbs of time and time related prepositions

Module II: Irregular verbs

Introduction to irregular verbs like to be, and others, to learn the conjugations of the same, (fahren, essen, lessen, schlafen, sprechen und ähnliche).

Module III: Separable verbs

To comprehend the change in meaning that the verbs undergo when used as such Treatment of such verbs with separable prefixes

Module IV: Reading and comprehension

Reading and deciphering railway schedules/school time table Usage of separable verbs in the above context

Module V: Accusative case

Accusative case with the relevant articles Introduction to 2 different kinds of sentences – Nominative and Accusative

Module VI: Accusative personal pronouns

Nominative and accusative in comparison Emphasizing on the universal applicability of the pronouns to both persons and objects

Module VII: Accusative prepositions

Accusative propositions with their use Both theoretical and figurative use

Module VIII: Dialogues

Dialogue reading: 'In the market place' 'At the Hotel'

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH – II

Course Code: FLS 211

Credit Unit: 02

Course Objective:

To enable students acquire more vocabulary, grammar, Verbal Phrases to understand simple texts and start describing any person or object in Simple Present Tense.

Course Contents:

Module I

Revision of earlier modules.

Module II

Some more AR/ER/IR verbs. Introduction to root changing and irregular AR/ER/IR ending verbs

Module III

More verbal phrases (eg, Dios Mio, Que lastima etc), adverbs *(bueno/malo, muy, mucho, bastante, poco)*. Simple texts based on grammar and vocabulary done in earlier modules.

Module IV

Possessive pronouns

Module V

Writing/speaking essays like my friend, my house, my school/institution, myself....descriptions of people, objects etc, computer/internet related vocabulary

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I - Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

CHINESE – II

Course Code: FLC 211

Credit Unit: 02

Course Objective:

Chinese is a tonal language where each syllable in isolation has its definite tone (flat, falling, rising and rising/falling), and same syllables with different tones mean different things. When you say, "ma" with a third tone, it mean horse and "ma" with the first tone is Mother. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents: Module I Drills Practice reading aloud Observe Picture and answer the question. Tone practice. Practice using the language both by speaking and by taking notes. Introduction of basic sentence patterns. Measure words. Glad to meet you. Module II Where do you live? Learning different colors. Tones of "bu" Buying things and how muchit costs? Dialogue on change of Money. More sentence patterns on Days and Weekdays. How to tell time. Saying the units of time in Chinese. Learning to say useful phrases like - 8:00, 11:25, 10:30 P.M. everyday, afternoon, evening, night, morning 3:58, one hour, to begin, to end etc. Morning, Afternoon, Evening, Night. Module III Use of words of location like-li, wais hang, xia Furniture - table, chair, bed, bookshelf,.. etc. Description of room, house or hostel room.. eg what is placed where and how many things are there in it? Review Lessons - Preview Lessons. Expression 'yao", "xiang" and "yaoshi" (if). Days of week, months in a year etc. I am learning Chinese. Is Chinese difficult? Module IV Counting from 1-1000 Use of "chang-chang". Making an Inquiry - What time is it now? Where is the Post Office? Days of the week. Months in a year. Use of Preposition - "zai", "gen". Use of interrogative pronoun - "duoshao" and "ji". "Whose"??? Sweater etc is it? Different Games and going out for exercise in the morning. Module V The verb "qu" Going to the library issuing a book from the library Going to the cinema hall, buying tickets Going to the post office, buying stamps Going to the market to buy things.. etc Going to the buy clothes Etc. Hobby. I also like swimming. Comprehension and answer questions based on it. **Examination Scheme:** CT1 Components CT2 С I V А Weightage (%) 20 20 15 20 20 5

C-Project+Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader Part I" Lesson 11-20

BIOPROCESS AND INDUSTRIAL BIOTECHNOLOGY

Course Code: MSB 301

Credit Unit:03

Course Objective:

The objective of the course is to apply the principles of biochemical engineering in large scale cultivation of microorganism for production of important products.

Course Contents:

Module I

Advantage of bioprocess over chemical process. Basic principle in bioprocess technology. Media formulation sterilization, thermal death kinetics, batch and continuous sterilization system. Sterilization of Industrial Media, Air and Fermenter

Module II

Transport phenomena in bioprocess – Mass transfer, mass transfer co-efficient for gases and liquids. Rate of oxygen transfer. Determination of oxygen transfer coefficient. Rheological properties of medium. Biological heat transfer, Heat transfer coefficients.

Bioprocess control and monitoring variables such as temperature, agitation, pressure etc.

Module III

Kinetics of microbial growth, substrate utilization and product formation Batch, Fed-batch, types of reactors – CSTR, tower, airlift, bubble column, packed bed, immobilized cells, Control and monitoring, online and off-line control, Computers in bioprocess control systems.

Module IV

Downstream Processing

Aqueous - two-phase extraction; Adsorption-desorption processes; Membrane based separation: Dialysis, Electro dialysis, Micro filtration, Ultra filtration.

Chromatographic methods of separation based on size, charge, reverse phase, hydrophobic interactions, and biological affinity, HPLC, FPLC, MS-LC, Gas chromatography.

Electrophoresis, principle, types on the basis of support media, 1D, 2D gel electrophoresis, continuous and capillary electrophoresis.

Crystallization, Drying, Case studies.

Biomass: Bakers and distillers yeast production using various raw materials, "bio" factors for growth, Crabtree effect, harvesting, mushroom production from agro based raw materials and uses.

Module V

Industrial production of enzymes: cellulase, amylase, protease; organic acids: citric acid, acetic acid, lactic acid; ethanol, biomass, antibiotics: classification, penicillins, tetracyclins, chloramphenicol; vitamins: B_{12} , riboflavin, fermented dairy products.

Ethanol: Production by batch, continuous and cell recycle adopted by various technologies practiced in Indian distilleries using molasses and grains computation of fermentation efficiency, distillation efficiency and overall efficiency of ethanol production, recovery, uses, glucose effect etc. po wer alcohol – definition, uses, merits and demerits of various technologies for its production.

Antibiotics: Various penicillin as precursor and 'R' – side chain, penicillianase, 6-APA, pencillin production, harvest and recovery, **Streptomycin:** Chemical structure, production, harvest and recovery, uses by-product of streptomycin fermentation.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Principles of Fermentation Technology, Salisbury, Whitaker and Hall, Aditya Text Pvt. Ltd.
- Industrial Microbiology, Casida, New Age International
- Industrial Microbiology, Prescott and Dunn, C.B.S. Publishers

- Biochemical Engineering, Bailley and Ollis.
- Principples of Biochemical Engineerin, Humphrey.

Molecular Genetics and Developmental Biology

Course Code: MSB 302

Credit Unit:03

THEORY

Course Objective:

It aims to promote an understanding and knowledge of genetics at molecular level as well as fundamentals and basic mechanisms of development biology

Course Contents:

Module I: Mendelian Genetics

Mendelian laws of inheritance, Monohybrid cross and the law of segregation, Dihybrid cross and law of independent assortment, Chromosome theory of inheritance, Multiple allele, lethal allele, Blood group, Rh factor

Module II: Fine Structure of Genes and Chromosomes

The concept of promoter, Coding sequence, Terminator, Induction of gene for expression. Structural organisation of chromatids, Centromeres, Telomeres, Chromatin, Nucleosome organisation; Euchromatin and heterochromatin; Special chromosomes (e.g., polytene and lampbrush chormosomes), Structural and numerical aberrations involving chromosomes; Hereditary defects - Kleinefelter, Turner, Cri-du-Chat and Down syndromes. Mutations - spontaneous and induced, Chemical and physical mutagens.

Module III: Extrachromosomal inheritance and Molecular Genetics

Coiling of shell in snails, Mitochondrial and chloroplast genetic systems, population genetics: Hardy-Weinberg equilibrium, Gene and genotypic frequencies.

Module IV

Introduction to the basic concepts of embryology and developmental biology. Gametogenesis: Spermatogenesis, its cellular and hormonal regulation. Oogenesis-Folliculogenesis and oocyte maturatiom. Fertilization-The cellular and molecular events-cell surface molecules in sperm-egg recognition in animals and union of gametes.

Module V

Cleavage patterns in animals. Early embryonic development and role of maternal contributions. Blastula formation and embryonic fields. Gastrulation and formation of germ layers. Morphogenesis, morphogenetic cells and molecules.

Examination Scheme

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text books:

- 1. Pierce, B. A. (2010). Genetics: A conceptual approach. Macmillan.
- 2. Berk, A., & Zipursky, S. L. (2000). Molecular cell biology (Vol. 4). New York: WH Freeman. **Reference Books:**

- 1. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., ... & Walter, P. (2013). Essential cell biology. Garland Science.
- 2. Brown, T. A. (1992). Genetics: a molecular approach (No. Ed. 2). Chapman & Hall.

ENZYME TECHNOLOGY AND IMMUNOTECHNOLOGY

Course Code: MSB 303

Credit Unit:03

Course Objective:

The course objective covers an understanding of the principles and application of protein, secondary metabolites and enzyme biochemistry applicable to industrial bioprocesses. Process design, operation strategies of various

enzyme reactors.

Role of antibody engineering in biomedical applications and the importance of immuno genetics in disease processes, tissue transplantation and immune regulation are some of the areas of attributes of this course which can help the students to understand the biotechnology related to human kind.

Course Contents:

Module I: Enzymology

Nomenclature of enzymes, Catalytic mechanisms, Regulation strategies, Inhibition of enzymes Single and multiple substrate systems, Allosteric enzymes, Enzyme kinetics.

Module II Enzyme technology and applications

Immobilization of enzymes, Process design and operation strategies for immobilized enzyme reactors of enzyme and Immobilization of multiple enzyme system, Abzymes, ADAPT and ADEPT, Application of enzyme - Industrial, Analytical and therapeutics, Textile processing

Module III:

Innate and acquired immunity, clonal nature of Immune Response.

Nature and Biology of antigens and super antigens Antibody structure and function; Types of immunity- innate, acquired, active and passive. Major Histocompatibility Complex, BCR and TCR, Complement system **Module IV:**

Cells of the immune system, Hematopoiesis and differentiation, lymphocyte trafficking, B-Lymphocytes, T - Lymphocytes, macrophages, dendritic cells, natural killer, lymphokines and lymphokine activated killer cells, eosinophils, neutrophils and mast cells. Regulation of immune response, Antigen processing and presentation, activation of B and T lymphocytes, cytokines and their role in immune regulation, T cell regulation and MHC restriction, immunological tolerance,

Module V: Cell mediated toxicity, Hypersensitivity, Autoimmunity, Tumor immunology, Transplantation Immunology, Synthetic vaccines, Immunological Techniques: Immuno diffusion, immuno-electrophoresis, ELISA, RIA, fluorescence activated cell sorter, Hybridoma technology and its applications

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Enzyme Technology, M.F. Chaplin and C. Bucke, Cambridge University Press.
- Enzyme Biochemistry, Biotechnology, Clinical Chemistry, Trevor Palmer.
- Steiner, K., & Schwab, H. (2012). Recent advances in rational approaches for enzyme engineering. Computational and Structural Biotechnology Journal, 2, e201209010. http://doi.org/10.5936/csbj.201209010
- Allan Svendsen Enzyme Functionality: Design: Engineering, and Screening 2003 CRC Press Ist edition.
- Turanli-Yildiz, B., Alkim, C., & Cakar, Z. P. (2012). *Protein Engineering Methods and Applications*. INTECH Open Access Publisher.
- Basic Immunology, A.K. Abbas and A.H. Lichtman, Saunders W.B. Company
- Immunology: A Short Course, E. Benjamin, R. Coico and G. Sunshine, Wiley-Leiss Inc.

- Enzyme: A Practical Introduction to structure, Mechanism and data analysis, R.A. Copeland, John Wiley & Sons Inc.
- James C. Samuelson Enzyme Engineering: Methods and Protocols (Methods in Molecular Biology) 2013 Humana Press
- Immunology, Roitt, Mosby Yearbook Inc.
- Kuby Immunology, R.A. Goldsby, T.J. Kindt, and B.A. Osborne, Free

RECOMBINANT DNA TECHNOLOGY

Course Code: MSB 304

Credit Unit:03

Course Objective:

A complete understanding of molecular techniques like DNA sequencing, restriction mapping, PCR for the cloning and expression of genes implication can be obtained through the course. The successful application of biotechnology largely depends on these advanced molecular techniques.

Course Contents:

Module I

Basic tools, specialized enzymes and specialized cloning vectors (e.g. Antarctic Phosphatase), Specialized cloning vectors (e.g. TOPO, TA, Gateway)

Module II: Gene isolation

Expression libraries and their screening, Techniques for analysis of genomic libraries (e.g. 3' RACE, 5' RACE, chromosome walking, chromosome jumping), T-DNA and transposon mediated gene traps

Module III: Heterologous gene expression (bacteria and yeast)

Advances in engineering of genes (codon optimization, translational enhancers, mRNA stabilizing factors), vectors (targeting signals, selection markers, purification and solubility tags) and hosts for overexpression and analysis

Module IV: Studying gene regulation and control

In-vitro transcription translation, run-on assays, protein-protein and protein-DNA interactions, promoter characterization, differential display. Manipulation of gene expression: Genome wide mutagenesis, gene silencing, RNAi, aptamers, constitutive and tissue specific promoters, expression enhancing elements, terminator technology

Module V:

Automation and robotic advances in RDT

DNA & protein isolation (alternatives to conventional methods) and sequencing (example from Human Genome Project and other sequencing projects), PCR machines, imaging and gel documentation

Laboratory, industrial and environmental applications of RDT

High throughput research, disease diagnosis and cure, forensics, DNA vaccines, drug discovery, maintaining genetic diversity, transgenic technology, marker-free GMOs

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Recombinant DNA by J.D. Watson et al., W.H. Freeman and Company
- Recombinant DNA Technology by T. A. Brown
- Principles of Gene Manipulation: An Introduction to Genetic Engineering by R.W. Old and S. B Primrose, Blackwell Science Inc

- Molecular Biotechnology: Principles and Applications of Recombinant DNA by B.R. Grick and J.J. Pasternak, ASM Press
- Molecular and Cellular Cells Methods in Biology and Medicine by P.B. Kaufman, W. Wu, D. Kim and C.J. Cseke, CRC Press.
- "Milestones in Biotechnology: Classic Papers on Genetic Engineering" by J.A. Bavies and W.S.
- Reznikoff, Butterworth Heinemann.
- "Gene Expression Technology" by D.V. Goeddel in Methods in Enzymology, Academic
- Press Inc.
- "DNA Cloning: A Practical Approach" by D.M. Glover and B.D. Hames, IRL Press.

GENOMICS AND PROTEOMICS

Course Code: MSB 305

Credit Unit:02

Course Objective:

The course helps in developing a detailed understanding of eukaryotic complexity and organization. Current research on the molecular basis of the control of gene expression in eukaryotic has developed a detailed

understanding of techniques of gene diagnostics and DNA profile to acquire the fundamental of genomics and

bioinformatics, it is desirable to have in depth study on these lines.

Course Contents:

GENOMICS

Module I: Introduction to Genomics

Contents of genomes, Molecular markers, Bioinformatics for the analysis of sequence data.

Module II: Transcriptomes

Genome expression; RNA Contents,

Module III

Strategies for large-scale sequencing projects. The structure, function and evolution of the human genome. The

human genome project. Human disease genes.

PROTEOMICS

Module IV: Introduction to proteomics

Protein structure: secondary structural elements, super-secondary structure, domains, mechanisms of protein folding, tertiary folds. Formation of oligomers. Protein solubility and interaction with solvents and solute. The activity of protein. Protein engineering principles.

Module V

Fundamental methods used in proteomics, Relationship between protein structure and function. Post

translational protein modification. Protein - protein interaction.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Genomes II, T.A. Brown
- Recombinant DNA (Second edition), James D. Watson and Mark Zoller.

- A primer of genome Science, Greg Gibson and Spencer V. Muse.
- Gene cloning and DNA analysis An introduction (fourth edition), T.A. Brown.

BIOPROCESS AND INDUSTRIAL BIOTECHNOLOGY LAB Course Code: MSB 321 Credit Units: 01

Course Contents:

Module I

Isolation of industrially important micro organisms for microbial processes.

Determination of Thermal Death Point and Thermal death time of micro organisms for design of a sterilizer Determination of growth curve of a supplied micro organism and also determine substrate degradation profile and to compute specific growth rate and growth yield from the data obtained.

Module II

Comparative studied of ethanol production using different substrates. Microbial production of antibiotics (Penicillin) Production and estimation of alkaline protease Sauer Krant fermentation

Module III

Conventional filtration Protein precipitation and recovery Aqueous two-phase separation Ion exchange chromatography Gel filtration Membrane based filtration i.e. Micro filtration and cross filtration in cross flow Modules.

Examination Scheme:

		IA	EE			
Practical (Mid Term)	Viva	Regular Performance	Attendance	Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

ENZYME TECHNOLOGY AND IMMUNOTECHNOLOGY LAB

Course Code: MSB 323

Course Contents:

Credit Units: 01

- 1. Effect of pH and temperature on enzyme activity
- 2. Determination of Km and Vm from LB plot.
- 3. Solid/ liquid state fermentation
- 4. Immobilization of enzyme
- 5. Blood film preparation and identification of cells.
- 6. Identification of blood group.
- 7. Isolation of serum.
- 8. Radial Immuno Diffusion Test
- 9. Ouchterlony Double diffusion Test
- 10. DOT ELISA, SANDWICH ELISA
- 11. Purification of lgG through affinity chromatography

Examination Scheme:

		IA	EE			
Practical (Mid Term)	Viva	Regular Performance	Attendance	Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

Note: Minor variation could be there depending on the examiner.

RECOMBINANT DNA TECHNOLOGY LAB

Course Code: MSB 324

Credit Units: 01

Course Contents:

- 1. Preparation and Transformation of competent cells by CaCl₂ method.
- 2. Restriction digestion
- 3. Ligation
- 4. Southern hybridization
- 5. Western blotting
- 6. RFLP
- 7. PCR

Examination Scheme:

		IA	EE			
Practical (Mid Term)VivaRegular PerformanceAttendance				Practical (End Term)	Practical Record	Viva
20	15	10	05	25	10	15

Note: Minor variation could be there depending on the examiner.

GENOMICS AND PROTEOMICS LAB

Course Code: MSB 325

Credit Units: 01

Course Contents:

- 1. Gene finding tools and Genome annotation
- 2. Comparison of two given genomes
- 3. Micro array and Micro array data analysis
- 4. Inference of protein function from structure
- 5. Two-hybrid methods

Examination Scheme:

		IA	EE			
PracticalVivaRegularAttendance(Mid Term)Performance		Attendance	Practical (End Term)	Practical Record	Viva	
20	15	10	05	25	10	15

Note: Minor variation could be there depending on the examiner.

ADVANCED FOOD TECHNOLOGY

Course Code: MSB 330

Credit Unit:03

Course Objective:

The purpose of the food biotechnology major is to produce professional with a wide range of pertinent knowledge and skills in food chemistry, food microbiology and safety, quantitative skills, engineering and

processing, marketing and consumer research.

Course Contents:

Module I

Processing and preservation technologies used in food industry: heating, drying, and baking, irradiation (infrared, microwave and radio frequency), concentration, freezing, chemical preservation, chilling, fermentation, a combination of those technologies.

Module II

Pre and post-harvest technologies for extension of storage life and better handling and transportation of fresh fruits and vegetables, to sustain freshness and reduce spoilage.

Module III

Development of environment - friendly packaging materials based on product characteristic and performance

properties packaging materials, and finished package forms, process schedules for thermal processing of foods in cans, glass, tin-free steel and aluminum containers, and retortable pouches based on heat penetration studies and sterilization value.

Module IV

Starter culture, prebiotics, probiotics - their use as flavor enhancer and diseases/ infection combats, application

in production of cheese, butter, ice-cream, yoghurt, application in biomedical research, e.g. recombinant LABs as vaccine; modified milk proteins.

Module V

Production of SCP (Single cell protein), baker's yeast, brewing industry, application of transgenic plants in food production, transgenic fish, transgenic poultry.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/	Class	Viva	EE
			Project/Seminar/Quiz	Test		
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Food technology by Fraziar.
- Food Microbiology, 2nd edition by Adams and Moss.

- Introduction to food Biotechnology. Green, Perry Johnson 2002. CRC Press, Boca Raton Florida.
- Food Biotechnology- Techniques and application. Gauri S. Mittal 1992. Technomic Publishing Co., Inc., Lancaster.

TISSUE ENGINEERING

Course Code: MSB 331

Credit Unit:03

Course Objective:

This course will cover topics related to the design and functional assessment of bioengineered tissue substitutes. Strategies for engineering tissues with a load-bearing function will be of particular focus. Strategies to study cell-surface and cell-cell interactions to physical stimuli, bioreactors, biological scaffolds and 3D cell-tissue constructs will be explored through recent papers.

Course Contents:

Module I: Fundamentals of tissue engineering

Basic definition, History, Concepts and overview, Principles and components, current scope of development; use in therapeutics and in vitro testing

Module II: Engineering materials

Scaffolds: Functions, Types (ECM-like Scaffolds, Tissue-Derived Scaffolds, Fibrin Gel, Natural Sponge; Injectable Scaffolds, Elastic Scaffolds, Inorganic Scaffolds Composite Scaffolds). Biomaterials: properties, cellular adhesion, surface modifications. Polymers (Natural such as Protein and Polysaccharides; Synthetic such as $Poly(\alpha-hydroxyacids, Hydrogels and Polyurethanes)$, Composite.

Module III: Cell Sources:

Fundamental properties of cells, autologous, allogeneic, syngeneic, and xenogeneic cells, and genetically engineered cells, Stem and progenitor cells. Cell Extraction, Biomolecules /synthetic ECM: Growth Factors (Representative Growth factors), Delivery of Growth factors

Module IV: Tissue Culture & Engineering Design Aspects

Biomechanics aspects of tissue engineering: application of physical forces, Principles of Scaffold Design – Material considerations, 2 D cell expansion, 3D Tissue Architecture and Function Transport considerations, Bioreactors, Cell seeding and metabolism considerations, Design of Polymeric Scaffolds, Interface Biology – Biocompatibility/Immunogenicity.

Module V: Case Studies

Musculoskeletal Tissue Engineering, Cardiovascular Tissue Engineering, Neural Tissue Engineering, Visceral Tissue Engineering. Other Key Issues and Emerging Areas of Interest: Nanobiotechnology, Ethical Issues, FDA and Regulatory Issues, Tissue Engineering Market

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Ouiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Text & References:

Text:

- Frontiers in Tissue Engineering (ISBN 0080426891), Patrick, Mikos, McIntire, Pergamon
- Principles of Tissue Engineering (ISBN 0124366309), Lanza, Langer, Vacanti, Academic Press

- Tissue Engineering: Engineering Principles for the Design of Replacement Organs and Tissues By W. Mark Saltzman; Published Oxford University Press US, 2004, pp 523
- Tissue engineering Fundamentals and Applications By Yoshito Ikada, Published Elsevier, 2006, pp 469
- Tissue Engineering Methods & Protocols (ISBN 0896035166, Morgan and Yarmush, Humana Press.

DRUG DISCOVERY & DEVELOPMENT

Course Code: MSB 332

Credit Unit:03

Course Objective:

The above course will be aimed to identify and design drugs that could be potentially useful in the identification of the candidate drugs, which have efficacy in cell culture or animal models, and thus the most effective compounds could be employed based on the above results for being moved through preclinical studies to clinical trials.

Module: I

Drug discovery & development:

General Introduction of drug design and development, Strategies for Target Identification and validation, Lead Identification and Optimization, Pre-Clinical Research and Clinical Research & Pharmacovigilance.

Module: II

Drug development considerations:

Introduction to Pharmacology, Sources of drugs, Dosage forms and routes of administration, mechanism of action, Combined effect of drugs, Factors modifying drug action, tolerance and dependence, Pharmacogenetics. **Module: III**

Pharmacokinetics:

Pharmacokinetic, Pharmacodynamic and Toxicological considerations in drug development, Physiochemical properties of drugs in relations to their biological activity, Rout of drugs administrations, Various types of dosage formulations, Stability of drugs.

Module: IV

Drug Receptor Theories:

Principles of drug action, Mechanisms of drug action, Drug-receptor interactions, Types of drug targets, G-Protein coupled receptor, Ion Channels, Ligand Gated Ion Channels, Enzymatic drug receptor and Transducer mechanisms, Dose response relationship, Factors modifying drug action.

Module: V

Rational Drug Design:

Introduction, Types of drugs design: Legand based, Structure based, Rational drug discovery, Computer Aided drug design, De novo drug design methodologies.

Structure activity relationships in drug design, Statistical techniques behind QSAR, Molecular descriptors 3D QSAR and COMFA, Molecular modeling, Molecular docking and dynamics.

Examination Scheme:

Components	Mid Term	Attendance	Assignment/ Project/Seminar/Quiz	Class Test	Viva	EE
Weightage (%)	15	5	10	10	10	50

Suggested Books:

- New Drug Development: Design, Methodology, and Analysis, by J. Rick Turner, Published by John Wiley & Sons, 2007.
- Essentials of Medical Pharmacology by K D Tripathi, Published by JAYPEE Brothers Medical Publishers (P) Ltd. 7th Edition 2010.
- Biopharmaceutics & Pharmacokinetics by DM Brahmankar & SB Jaiswal, Published by Vallabh Prakashan; 3rd Edition 2012.
- Drug Discovery and Clinical Research, by S.K Gupta, Published by JAYPEE Brothers Medical Publishers (P) Ltd

COMMUNICATION SKILLS - III

Course Code: BCS311

Credit Units: 01

Course Objective:

To initiate the learners with the basic mechanics of writing skills and facilitate them with the core skills required for communication in the professional world.

Course Contents:

Module I: Mechanics and Semantics of Sentences

Writing effective sentences Style and Structure

Module II: Developing writing skills

Inter - office communication: Business Letter; E mails; Netiquette Intra – office communication: Memos, Notices, Circulars, Minutes Report Writing

Module III: Business Presentations

Planning, design and layout of presentation Information Packaging Audience analysis Audio visual aids Speaking with confidence Case Studies

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	Α
Weightage (%)	20	20	25	10	10	10	5

CAF – Communication Assessment File GD – Group Discussion GP – Group Presentation

- Krishnaswamy, N, Creative English for Communication, Macmillan
- Raman Prakash, Business Communication, Oxford.

Behavioral Science III (Leading Through Teams)

Course Code: BSS311

Credit Units: 01

Course Objective:

This course aims to enable students to:

Understand the concept and building of teams

Manage conflict and stress within team

Facilitate better team management and organizational effectiveness through universal human values.

Course Contents:

Module I: Teams: An Overview

Team Design Features: team vs. group Effective Team Mission and Vision Life Cycle of a Project Team Rationale of a Team, Goal Analysis and Team Roles

Module II: Team & Sociometry

Patterns of Interaction in a Team Sociometry: Method of studying attractions and repulsions in groups Construction of sociogram for studying interpersonal relations in a Team

Module III: Team Building

Types and Development of Team Building Stages of team growth Team performance curve Profiling your Team: Internal & External Dynamics Team Strategies for organizational vision Team communication

Module IV: Team Leadership & Conflict Management

Leadership styles in organizations Self Authorized team leadership Causes of team conflict Conflict management strategies Stress and Coping in teams

Module V: Global Teams and Universal Values

Management by values Pragmatic spirituality in life and organization Building global teams through universal human values Learning based on project work on Scriptures like Ramayana, Mahabharata, Gita etc.

Module VI: End-of-Semester Appraisal Viva based on personal journal Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	Α	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Organizational Behaviour, Davis, K.
- Hoover, Judhith D. Effective Small Group and Team Communication, 2002, Harcourt College Publishers
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
- Dick, Mc Cann & Margerison, Charles: Team Management, 1992 Edition, viva books
- J William Pfeiffer (ed.) Theories and Models in Applied Self Development and Interpersonal Skills, Vol 2, Group (1996); Pfeiffer & Company
- Smither Robert D.; The Psychology of Work and Human Performance, 1994, Harper Collins College Publishers

FRENCH - III

Course Code: FLT311

Credit Units: 02

Course Objective:

To provide the students with the know-how

- To master the current social communication skills in oral and in written.
- To enrich the formulations, the linguistic tools and vary the sentence construction without repetition.

Course Contents:

Module B: pp. 76 – 88 Unité 6

Module C: pp. 89 to103 Unité 7

Contenu lexical: Unité 6: se faire plaisir

1. acheter : exprimer ses choix, décrire un objet (forme, dimension, poids et matières) payer

- 2. parler de la nourriture, deux façons d'exprimer la quantité, commander un repas au restaurant
 - 3. parler des différentes occasions de faire la fête

Unité 7: Cultiver ses relations

- 1. maîtriser les actes de la communication sociale courante
 - (Salutations, présentations, invitations, remerciements)
- 2. annoncer un événement, exprimer un souhait, remercier,
 - s'excuser par écrit.
 - 3. caractériser une personne (aspect physique et caractère)

Contenu grammatical:

- 1. accord des adjectifs qualificatifs
- 2. articles partitifs
- 3. Négations avec de, ne...rien/personne/plus
- 4. Questions avec combien, quel...
- 5. expressions de la quantité
- 6. ne...plus/toujours encore
- 7. pronoms compléments directs et indirects
- 8. accord du participe passé (auxiliaire « avoir ») avec l'objet direct
- 9. Impératif avec un pronom complément direct ou indirect
- 10. construction avec « que » Je crois que/ Je pense que/ Je sais que

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

GERMAN - III

Course Code: FLG311

Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Modal verbs

Modal verbs with conjugations and usage Imparting the finer nuances of the language

Module II: Information about Germany (ongoing)

Information about Germany in the form of presentations or "Referat"- neighbors, states and capitals, important cities and towns and characteristic features of the same, and also a few other topics related to Germany.

Module III: Dative case

Dative case, comparison with accusative case Dative case with the relevant articles Introduction to 3 different kinds of sentences – nominative, accusative and dative

Module IV: Dative personal pronouns

Nominative, accusative and dative pronouns in comparison

Module V: Dative prepositions

Dative preposition with their usage both theoretical and figurative use

Module VI: Dialogues

In the Restaurant, At the Tourist Information Office, A telephone conversation

Module VII: Directions

Names of the directions Asking and telling the directions with the help of a roadmap

Module VIII: Conjunctions

To assimilate the knowledge of the conjunctions learnt indirectly so far

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I - Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - III

Course Code: FLS311

Course Objective:

To enable students acquire knowledge of the Set/definite expressions (idiomatic expressions) in Spanish language and to handle some Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules Set expressions (idiomatic expressions) with the verb *Tener*, *Poner*, *Ir*.... Weather

Module II

Introduction to Gustar...and all its forms. Revision of Gustar and usage of it

Module III

Translation of Spanish-English; English-Spanish. Practice sentences. How to ask for directions (using estar) Introduction to IR + A + INFINITIVE FORM OF A VERB

Module IV

Simple conversation with help of texts and vocabulary En el restaurante En el instituto En el aeropuerto

Module V

Reflexives

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Español, En Directo I A
- Español Sin Fronteras -Nivel Elemental

Credit Units: 02

CHINESE – III

Course Code: FLC311

Credit Units: 02

Course Objective:

Foreign words are usually imported by translating the concept into Chinese, the emphasis is on the meaning rather than the sound. But the system runs into a problem because the underlying name of personal name is often obscure so they are almost always transcribed according to their pronciation alone. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills Dialogue practice Observe picture and answer the question. Introduction of written characters. Practice reading aloud Practice using the language both by speaking and by taking notes. Character writing and stroke order

Module II

Measure words Position words e.g. inside, outside, middle, in front, behind, top, bottom, side, left, right, straight. Directional words – beibian, xibian, nanbian, dongbian, zhongjian. Our school and its different building locations. What game do you like? Difference between "hii" and "neng", "keyi".

Module III

Changing affirmative sentences to negative ones and vice versa Human body parts. Not feeling well words e.g. ; fever, cold, stomach ache, head ache. Use of the modal particle "le" Making a telephone call Use of "jiu" and "cal" (Grammar portion) Automobiles e.g. Bus, train, boat, car, bike etc. Traveling, by train, by airplane, by bus, on the bike, by boat etc.

Module IV

The ordinal number "di" "Mei" the demonstrative pronoun e.g. mei tian, mei nian etc. use of to enter to exit Structural particle "de" (Compliment of degree). Going to the Park. Description about class schedule during a week in school. Grammar use of "li" and "cong". Comprehension reading followed by questions.

Module V

Persuasion-Please don't smoke. Please speak slowly Praise – This pictorial is very beautiful Opposites e.g. Clean-Dirty, Little-More, Old-New, Young-Old, Easy-Difficult, Boy-Girl, Black-White, Big-Small, Slow-Fast ... etc. Talking about studies and classmates Use of "it doesn't matter" Enquiring about a student, description about study method. Grammar: Negation of a sentence with a verbal predicate.

Examination Scheme:

Components	CT1	CT2	С	Ι	V	Α
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation I – Interaction/Conversation Practice

Text & References:

"Elementary Chinese Reader Part I, Part-2" Lesson 21-30 •

PROJECT

Course code: MSB 460

Credit Units: 24

GUIDELINES FOR PROJECT FILE

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation. Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage.

The File is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include

- A short account of the activities that were undertaken as part of the project;
- A statement about the extent to which the project has achieved its stated goals.
- A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project;
- Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project;
- Any problems that have arisen that may be useful to document for future reference.

Report Layout

The report should contain the following components:

> Title or Cover Page

The title page should contain the following information: Project Title; Student's Name; Course; Year; Supervisor's Name.

Acknowledgements (optional)

Acknowledgment to any advisory or financial assistance received in the course of work may be given.

> Abstract

A good "Abstract" should be straight to the point; not too descriptive but fully informative. First paragraph should state what was accomplished with regard to the objectives. The abstract does not have to be an entire summary of the project, but rather a concise summary of the scope and results of the project

Table of Contents

Titles and subtitles are to correspond exactly with those in the text.

> Introduction

Here a brief introduction to the problem that is central to the project and an outline of the structure of the rest of the report should be provided. The introduction should aim to catch the imagination of the reader, so excessive details should be avoided.

Materials and Methods

This section should aim at experimental designs, materials used. Methodology should be mentioned in details including modifications if any.

Results and Discussion

Present results, discuss and compare these with those from other workers, etc. In writing these section, emphasis should be given on what has been performed and achieved in the course of the work, rather than discuss in detail what is readily available in text books. Avoid abrupt changes in contents from section to section and maintain a lucid flow throughout the thesis. An opening and closing paragraph in every chapter could be included to aid in smooth flow.

Note that in writing the various sections, all figures and tables should as far as possible be next to the associated text, in the same orientation as the main text, numbered, and given appropriate titles or captions. All major equations should also be numbered and unless it is really necessary never write in "point" form.

Conclusion

A conclusion should be the final section in which the outcome of the work is mentioned briefly.

Future prospects

Appendices

The Appendix contains material which is of interest to the reader but not an integral part of the thesis and any problem that have arisen that may be useful to document for future reference.

References/ Bibliography

This should include papers and books referred to in the body of the report. These should be ordered alphabetically on the author's surname. The titles of journals preferably should not be abbreviated; if they are, abbreviations must comply with an internationally recognised system.

Examples

For research article

Voravuthikunchai SP, Lortheeranuwat A, Ninrprom T, Popaya W, Pongpaichit S, Supawita T. (2002) Antibacterial activity of Thai medicinal plants against enterohaemorrhagic Escherichia coli O157: H7. Clin Microbiol Infect, 8 (suppl 1): 116–117.

For book

Kowalski, M. (1976) Transduction of effectiveness in Rhizobium meliloti. SYMBIOTIC NITROGEN FIXATION PLANTS (editor P.S. Nutman IBP), 7: 63-67

ASSESSMENT OF THE PROJECT FILE

Essentially, marking will be based on the following criteria: the quality of the report, the technical merit of the project and the project execution.

Technical merit attempts to assess the quality and depth of the intellectual efforts put into the project. Project execution is concerned with assessing how much work has been put in. The File should fulfill the following assessment objectives:

Range of Research Methods used to obtain information

Execution of Research

Data Analysis Analyse Quantitative/ Qualitative information **Control Quality Draw Conclusions**

Examination Scheme: Evaluation will be done by external examiner

Project Report 50 Viva Voce 50 100

Total

AANANDAM (RUSA – Govt. of Rajasthan) Course Code: AND001/002/003

Credit:2 /sem

Ref: 27.11, Academic Council of AUR

INTRODUCTION

Aanandam is a credited subject that aims to instill the joy of giving and sharing in young people through community participation, helping them to be responsible citizens and be initiators of change for a healthy society. A daily act of goodness and charity will infuse the habit of community service in students. The faculty will emphasize shift in focus-Happiness is not in acquiring things, but permanent happiness comes from giving, sharing, and caring for someone.

The faculty will inspire students for Individual Social Responsibility (ISR) and will inculcate the qualities of compassion, an open mind, a willingness to do whatever is needed and positive attitude in students. Imagination and Creativity are to be appreciated. An aim and a vision are to be developed in students.

OUTCOME OF AANANDAM COURSE

The student should develop:

- Awareness and empathy regarding community issues
- Interaction with the community and impact on society
- Interaction with mentor and development of Student teacher relationship
- Interaction among students, enlarge social network
- Cooperative and Communication skills and leadership qualities
- Critical thinking, Confidence and Efficiency

AANANDAM: COMMUNITY SERVICE

- Community service programs are very effective for students' **personal** and **social**, ethical, and **academic** development. These effects depend on the characteristics of the programs chosen
- Involvement of students in community work has an impact on development of student skills, creativity, critical thinking, and innovative powers. Passion and Positivity are basic requirements for Community service
- They would examine social challenges /problems, assess the needs of the community, evaluate previous implemented projects, and think of further solutions
- They would learn to cooperate and collaborate with other agencies and inculcate leadership qualities.

BENEFITS TO THE STUDENTS

Students should dedicate time as a volunteer as it helps them to:

- apply their knowledge and skills to solve specific community problem
- learn to plan, lead, and organize community events have a sense of belonging to their college campus and community and find something they are interested in doing during their free time
- make new friends, expand social network, and boost social skills and mental health.
- obtain employment

• be useful to society as it will protect them against stress, frustration, and depression

ABOUT AANANDAM COURSE

Students are expected to engage in:

- An individual act of goodness caring, sharing and giving (time and energy) everyday group activity a project in service of the local community (Group Community Service Project)
- Aanandam Day- will be celebrated once a month in the last week as decided by Director/HoIs.
- It is a credited subject. Marks/ Grades both will be entered in the marks sheet as per the university rules.
- Two credits for a project in each semester
- 50 marks for each project to be completed in 4 Months.

DIRECTIONS FOR STUDENTS

- Do at least one individual act of goodness each day and Record this act in a dedicated diary/register
- Share this dedicated diary/register in a 30-minute**Anandamperiod** with the mentor and share your experience with the class
- Students in Semester scheme must take up one Group Community Service Project per semester
- Students in **Annual scheme** must take up two Group Community Service Projects per year
- Take one Group Community Service Project from August to November
- Take one Group Community Service Project from January to April
- The students must take photographs to document their work
- The students can obtain certificate from the NGO/ Government Agency they are working with for Group Community Service Project
- The students may submit newspaper cuttings
- The students must participate in the Aanandam Day by displaying charts of their Group Community Service Project
- They can make power point presentations of their project which will help them get better grades

ROLE OF FACULTY MENTOR

- The mentor will **maintain a register** wherein the entry of act of goodness will be tick mark and be submitted every day to the Director/HoIs
- Review every student's dedicated register to see if they have recorded an act of goodness for that day and mark in register. The act will not be evaluated just if it was recorded or not.(Be suggestive not judgmental)
- In half an hour class some students and faculty will deliberate on the pleasure of giving and acts of goodness. This should be done by rotation so that all students get a chance to speak and express themselves
- The mentor will divide the class for the Group Community Service Project and record it in a register.8-12 students can form a group for project work.
- The students will opt the project of their choice.
- The mentors can mobilize the required resources and support for the projects. They can coordinate and collaborate with Government bodies or NGOs.
- The mentor will guide the students to write the Group Community Service Project Report.

• Mentors will review the project on monthly basis and submit the report to the nodal officer of the college to compile and share with higher authorities on Google spread sheet

ROLE OF DIRECTOR/HOIS

- Allot one period of half an hour for Aanandam course
- Assign all faculty members as mentors for this period of half an hour for students
- Each faculty will have one class to mentor
- Appoint one faculty as department Aanandam Coordinator to monitor the program in their department and submit the monthly report to the University Nodal Officer which he/she will submit further to DCE Govt. of Rajasthan.
- To coordinate the **Aanandam Day** activities
- To organize **Aanandam Day** in the last week of the month. A film or motivational lecture by some philanthropist (Bhamashah, Collector, Janpratinidhi) should be organized for the benefitof students (to motivate and inspire them for community service)
- Photographs of the **Aanandam Day** should be displayed in department and these should be uploaded in the gallery of University web page on HTE portal
- A **Project Assessment Committee** (PAC) to be constituted to assess the project report.

PROJECT ASSESSMENT COMMITTEE

Formation of Project Assessment Committee

- Director/HoIs
- One person from community
- Departmental Aanandam Coordinator
- Project Mentors (1 to 7 or more members)

The number of mentors can vary depending on the number of projects and students in each department.

- University level PAC to be formed for university colleges and departments
- State level PAC to be formed at Commissionerate level for Universities

PROJECTS: SUGGESTIVE LIST

The students and mentor as per their interest would support activities of community service such as:

- literacy programs, in today's digital age many organizations/individuals might also need help with email and websites
- livelihood projects,
- time giving activities to adopted communities(awareness regarding Govt. programmes)sports like yoga, meditation, drills, and physical exercises in adopted areas
- activities on arts and culture such as restoration of traditional art and culture and monuments.
- understand their responsibility in taking care of environment and appreciating cultural diversity
- While some students would be interested in awareness about environment such as protecting and preserving natural resources and animal species (the flora and the fauna). Plantation and animal care centers

- A few would be concerned with healthcare like medical and dental missions, first-aid training, etc.
- Another group may be formed for attending to old people(who have money but need assistance for market and groceries) [Time Bank]
- > Another group may be formed for civic activities, awareness programmes.
- > Local social problems to be taken up and solutions devised
- Innovations and Startups to be encouraged
- ▶ help plant a community garden, help out at a children's camp

THE PROJECT REPORT

The project report should be guided by the mentor and shall contain:

- **Synopsis**: clearly stating objectives and activities to be undertaken. Problem identifying and problem-solving projects to be taken up.
- Details of the **Mentor and the Participants are to** be given (name of mentor, name of participants, phone number/mobile no, email, and address)
- Location / community where the work was carried out
- Details of Activities performed are to be given with date
- Number of beneficiaries and impact on the society(the object should be to empower the community and make them self-reliant)
- Photographs taken for documentation of work should be submitted
- Media coverage of the projects should be attached if any
- Students should also submit their certificates from the government bodies and or non government bodies they collaborate with, if any
- Photographs of **Display charts** or **ppt/video** prepared while presentation on the group community service in the **Aanandam Day** must be submitted along with the report
- The Group Community Service Project Report will be submitted by the Student group leader under the guidance of the mentor to the Director/HoIs of the Department.
- The Director/HoIs should get the best report (more than one if required) of the Group Community Service Project uploaded on the HTE website and on the University page
- The Director/HoIs will forward the best report of the department to the Nodal Officer of the University.
- University will forward the report to the state level committee.

PROCEDURE FOR EVALUATION

- **Project Assessment Committee** will assess the Group Community Service Project Report
- submitted by the students, in the duly filled given format, based on:
- Submission of the student dedicated daily diary as per student attendance norms students' performance and interaction with the community
- presentation of the project report
- impact on society and the course outcome results

Format for evaluation by Project Assessment Committee (Total max marks 50)

- Submission of register of everyday activity mandatory (if register is not submitted by the student, he/she will not be evaluated and considered for the award)
- Report contains presentation /video (max.10 marks)
- Photographs of Students' participation and involvement of community (max.10 marks)
- Problem solving and challenging issues addressed/innovation (max. 30 marks)

EVALUATION: GRADES EQUIVALENCE

Project Assessment Committee constituted will assess the projects For 4 months Group Community Service Project the grade equivalence is as follows:

Total: 64 Hrs

Grading Marks C grade =32 hrs B grade>32hrs to <=44hrs A grade >44hrs to<=54hrs O grade >54hrs to<=64hrs

AWARD AND RECOGNITIONDEPARTMENT, UNIVERSITY AND STATE LEVEL

- Based on the impact on society and Aanandam project outcome one Group Community Service Project will be selected by the Project Assessment Committee at department level for award of best project of the Department.
- The best project report of the University will be submitted to the Director, College Education/ Department of Higher and Technical Education for contesting the state level award
- State Level Project Assessment Committee will evaluate projects received from all the universities (one each).
- A certificate/letter of appreciation to the winning teams (Nodal officer of the university, students, and mentor of the project) will be given